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ABSTRACT OF DISSERTATION

NOVEL COMPUTATIONAL METHODS FOR SEQUENCING DATA ANALYSIS:
MAPPING, QUERY, AND CLASSIFICATION

Over the past decade, the evolution of next-generation sequencing technology has consid-
erably advanced the genomics research. As a consequence, fast and accurate computational
methods are needed for analyzing the large data in different applications. The research pre-
sented in this dissertation focuses on three areas: RNA-seq read mapping, large-scale data
query, and metagenomics sequence classification.

A critical step of RNA-seq data analysis is to map the RNA-seq reads onto a refer-
ence genome. This dissertation presents a novel splice alignment tool, MapSplice3. It
achieves high read alignment and base mapping yields and is able to detect splice junc-
tions, gene fusions, and circular RNAs comprehensively at the same time. Based on Map-
Splice3, we further extend a novel lightweight approach called iMapSplice that enables
personalized mRNA transcriptional profiling. As huge amount of RNA-seq has been shared
through public datasets, it provides invaluable resources for researchers to test hypotheses
by reusing existing datasets. To meet the needs of efficiently querying large-scale sequenc-
ing data, a novel method, called SeqOthello, has been developed. It is able to efficiently
query sequence k-mers against large-scale datasets and finally determines the existence
of the given sequence. Metagenomics studies often generate tens of millions of reads to
capture the presence of microbial organisms. Thus efficient and accurate algorithms are
in high demand. In this dissertation, we introduce MetaOthello, a probabilistic hashing
classifier for metagenomic sequences. It supports efficient query of a taxon using its k-mer
signatures.

KEYWORDS: RNA-seq, mapping, splice junction, Othello, query, classification
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Chapter 1 Introduction

1.1 Biological background

The hereditary information instructing the development and functioning of organisms is

stored in deoxyribonucleic acid (DNA). It is a long and double-stranded molecule, and

each strand consists of nucleotides or bases. There are four types of nucleotides or bases,

denoted as adenine(A), cytosine(C), guanine(G), and thymine(T). The genome refers to

the entire set of unique DNAs. As shown in Table1.1, the size of known genomes varies

largely. The human genome contains about 3 billion bases.

Table 1.1: Genome sizes of different organisms.

Organism Common Name GenomeSize
Arabidopsis thaliana Mouse-ear cress 100,00,000

Drosophila melanogaster Fruit fly 165,000,000
Fugu rubripes Japanese pufferfish 400,000,000
Homo sapiens Human 3,000,000,000
Mus musculus Mouse 3,000,000,000

Schizosaccharomyces pombe Fission yeast 14,000,000

Genes are regions on genomes that encode functional RNAs or protein produces. Each

gene is located in a specific location on a chromosome and responsible for a particular

function. So far, around 20,000-25,000 protein-coding genes exist in the human genome.

They vary in size from a few hundred bases to more than 2,000,000 bases.

Proteins are important functional molecules in living organisms. The synthesis of pro-

teins are guided by genes but not in a direct way. The Figure1.1 shows how genes guide
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Figure 1.1: Central dogma of mulecular biology. The gene shown above contains four
exons sparated by three introns. In the first step of transcription, pre-mRNA is created.
Second, the pre-mRNA is spliced into mRNA transcript, and this step is called splicing,
in which all exons are retained and introns are removed. Third, the mRNA transcript is
translated into protein.

the process of protein products creation. The first step is transcription, in which genes

are read by an enzyme called polymerases and transcribed into primary RNA transcripts

(pre-mRNAs). In the next step of splicing, exons are retained and joined. Introns are ex-

cised and mRNA transcripts are generated. Then protein products are finally created after

translation of mRNA transcripts.

The transcriptome consists of all messenger RNAs transcribed from the genome of a

cell or a population of cells. The elucidation of the transcriptome profiles associated with

biological processes and developmental mechanisms is a critical area of biology. Anal-
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ysis of mRNA transcriptome consisting of mRNA transcripts provides a great chance of

studying and revealing the linkage from genotype to phenotype.

1.2 Next generation sequencing and RNA-seq

Recent years, Next Generation Sequencing (NGS), or High Throughput Sequencing, has

emerged as one of the main technologies that advance the study of molecular biology. It

generates a large amount of short sequence data of genome (Whole Genome Sequencing),

exome (Whole Exome Sequencing), transcriptome (RNA Sequencing, or RNA-seq), etc.

RNA-seq directly samples and sequences from the mRNA transcriptome without de-

pendence on predetermined sequence templates. This enables the detection of novel tran-

scripts as no pre-knowledge of gene/transcript sequences are required. At the same time,

this sequencing technique pictures transcriptome with a high resolution on base level and

makes the accurate quantification of transcripts possible.

As shown in Figure1.2, typically, in an RNA-seq experiment, the probed RNA molecules

in the target transcriptome are firstly fragmented into shorter pieces and synthesized into

cDNAs, then those cDNA pieces with a proper size would be selected for sequencing. The

output of the RNA-seq experiment is the single-end (sampled from one end) or paired-end

reads (sampled from both ends), typically of length 50 - 300. Nowadays, to improve sam-

pling coverage at the same sequencing capability, the paired-end sequencing strategy has

been widely adopted.
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Figure 1.2: Overview of a typical RNA-seq experiment. (1) RNA molecules are fragmented
firstly; (2) 3′ fragment end is utilized to make single stranded cDNA; (3) 5′ fragment end
is selected and double stranded cDNA is created during second-strand synthesis; (4) frag-
ments are categorized based on their size and those with proper size will be used further
for sequencing; (5) fragments are sequenced and single-end (sampled from one end) or
paired-end reads (sampled from both ends) are generated. (Figure partially adpated from
Wikipedia (www.wikipedia.com))

1.3 Current computational methods for Next Generation Sequencing data analysis

As Next Generation Sequencing technology (NGS) plays a more and more prominent role

in biological studies, many computational methods have been developed for the analysis of

NGS data.
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1.3.1 The typical RNA-seq data analysis pipeline

In the past decade, RNA-seq has established itself as the major technology in transcriptome

profiling. Its capability in deep sequencing RNA transcripts provides an unprecedented de-

tail in identifying the exact variety and quantity of transcript isoforms in a transcriptome.

This allows researchers to uncover important gene expression changes on a transcript iso-

form level. These would have been overlooked in traditional studies where gene expression

was measured as a function of transcript products for a particular gene locus. As is shown

in Figure 1.3, two types of reads are generated by sequencing machines based on their

origins: continuous reads and spliced reads. Continuous reads will fall into a single exon,

while the spliced ones would span two or more exons. For a simulated human RNA-seq

dataset with typical read length 100bp and realistic parameters [Kim et al., 2015], we would

expect around 38% of reads span two or more exons. And this proportion increases signif-

icantly from 19% to 46% as read length increases from 50bp to 150bp. The bases covered

by read sequences are all exonic ones, and the splice sites could be obtained from spliced

reads. The density of reads also reflects the abundance of mRNA transcript. Thus obtaining

the origins of reads can help reveal mRNA transcript structure and abundance.

The typical analysis pipeline of RNA-seq data is described in Figure 1.4. The input

is RNA-seq datasets, which usually contain tens to hundreds of millions of reads with a

typical length of 50-300bp. Four regular applications based on RNA-seq data are listed

in the figure, including transcript reconstruction, transcript quantification, differential tran-

scription analysis, and differential gene expression analysis. Many computational software

programs have been developed for each of those four applications. For example, Trin-
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Figure 1.3: Origins of reads reveal mRNA transcript structure and abundance. There are
two types of reads according to their origins. The first type of reads are continuous ones
and the other type of reads are spliced ones. The bases covered by read sequences are all
exonic ones, and the splice sites could be obtained from spliced reads. The density of reads
also reflects the abundance of mRNA transcript. The more reads fall into the corresponding
genomic regions, the higher expression the mRNA transcript has.

ity [Grabherr et al., 2013] and Cufflinks [Trapnell et al., 2010] can be used to assemble

aligned reads into transcripts. RSEM [Li and Dewey, 2011a] and eXpress [Roberts et al.,

2011] are two widely used tools in transcript quantification - transcript abundance predic-

tion. Differential transcription events such as alternative splicing and isoform switching

can be detected by DiffSplice [Hu et al., 2013] and EBseq [Leng et al., 2013]. For differ-

ential gene expression analysis, DESeq2 [Love et al., 2014] and edgeR [Robinson et al.,

2010] are the two most popular software.
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Figure 1.4: Typical RNA-seq data analysis pipeline. Read alignment is the first and funda-
mental step of all the four common RNA-seq data analysis applications.

1.3.2 RNA-seq read alignment and splice junction detection

For all of those four applications, the first and key step is mapping reads back to the ref-

erence genome, i.e. spliced alignment. The existence of spliced reads makes the mapping

problem for RNA-seq reads turn out to be more challenging compared to that of DNA-seq

reads from two aspects. First of all, RNA-seq spliced aligners have to deal with gapped

alignments with very large gaps (introns). Typically, in mammalian genomes, introns span

a wide range of length from 50 to 500,000 bases. Secondly, pseudogenes with introns

removed would cause many exon-spanning reads to map incorrectly. As shown in Fig-

ure 1.5, the pseudogene contains the same exons as the gene with the intron removed. In

that case, reads crossing the inron are very likely to be mapped incorrectly to the pseudo-

gene. Besides of the positions of alignments, spliced aligner also reports the differences

(mismatches, insertions, and deletions) between the sequencing reads and the reference

7



www.manaraa.com

Figure 1.5: An illustration of alignment difficulty caused by the presence of pseudogene.

genome.

In the past few years, as shown in Figure 1.6, numerous next generation sequencing

read aligners have been developed, including but are not limited to Tophat [Trapnell et al.,

2009, Kim et al., 2013], MapSplice1/2 [Wang et al., 2010], GSNAP [Wu and Nacu, 2010],

STAR [Dobin et al., 2013], HISAT [Kim et al., 2015] and some other.

Before the advent of spliced aligners designed specifically for RNA-seq reads, some

general alignment tools like BLAST [Altschul et al., 1990] and the BLAST-like tools such

as BLAT [Kent, 2002] are used to do RNA-seq read alignment. However several problems

limit their application on aligning RNA-seq reads against the reference genome. First of

all, RNA-seq reads are too short, and they can not handle reads with that size properly.

Secondly, splicing signals (flanking strings for most splice site are “GT/AG”) are not con-

sidered in the algorithms, which impairs the accuracy of splice junction detection. Thirdly,

they are far way too slow to finish the alignment task of tens to hundreds of millions of

reads in a limited time.

The first set of spliced alignment tools including Tophat, GSNAP, and MapSplice were

developed around the year 2010. They are mainly designed for the very short reads (36 to

50bp) generated by the very early sequencing machines. Their performance dramatically

drops when applied to relatively longer reads with the length more than 200bp. Among
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Figure 1.6: Aligners timeline since 2001. DNA mappers are plotted in blue, mRNA aligners
(spliced aligners) are plotted in red and miRNA mappers in green and bisulphite mappers
in purple. Grey dotted lines connect related mappers (extensions or new versions).

them, Tophat and MapSplice firstly perform exonic continuous alignment with pre-split

read segments based on unspliced aligner Bowtie [Langmead and Salzberg, 2012]. The

indexing data structure used by Bowtie is FM index of Burrows-Wheeler Transformer

(BWT). GSNAP is a seed-extend spliced aligner and uses all 12-mers in the read to iden-

tify candidate mapping locations. It would first extract the seeds of reads and scan in the

hashtable with exact matching positions in reference genome returned. Then these seeds
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would be extended until the whole read sequence is covered. Partially due to the inefficient

indexing structure, these tools are also not scalable enough to handle the large and ever-

increasing sequencing datasets. As RNA-seq technology evolves, the sequencing through-

put has increased dramatically to 100-500 million reads per run. As mentioned before,

obtaining the alignments of reads is the first step in many RNA-seq applications, but this

time-consuming may take several days to process a regular RNA-seq experiment data with

these first generation spliced aligners.

Recently, two aligners STAR and HISAT are introduced to provide a probability of

performing super-fast read alignment. STAR uses uncompressed suffix array as the index

to accelerate the whole algorithm. Though the size of uncompressed suffix array is much

larger than that of BWT-FM index (STAR requires 32 GB RAM for alignment against

human genome), it is still acceptable as more and more high performance computing re-

sources are used in genomics research and the price of RAM becomes lower and lower.

STAR firstly perform Maximal Mappable Prefix search iteratively from the beginning to the

last base of read sequences. Then those aligned maximal prefixes are clustered and stitched

to generate alignments as well as the corresponding alignment score. HISAT adopts a new

indexing scheme of hierarchical structure based on Burrows-Wheeler transform and FM-

index. It consists of one global FM index and around 48,000 local FM indexes for the

human genome, and each local FM index represents a genomic region of 64,000bp. It also

uses Bowtie to handle exonic alignment as Tophat1/2. To map a read sequence onto the

reference genome, HISAT starts with applying exonic alignment with selected segments

from the read sequence to locate the candidate mapping regions based on the global index.

Then the local indexes of the candidate regions are used to finalize the alignment. The
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far smaller size of the local index allows itself to fit in the cache as a whole, which con-

siderably reduces the cache misses that frequently happen when applying exact matching

against the global index.

Here, we categorized existing published spliced aligners based on types of the index

they are using. Three kinds of indexes are widely used, including k-mer hash table, BWT-

FM index, and suffix array.

K-mer hash table: In k-mer hash table, the keys are the k-mer sequences, and the values

are the positions they occur in the reference genome. The length k of the k-mer sequences

has a large impact on the performance of that kind of methods. The smaller k is, the more

sensitive the algorithms would be, and the more computational time would be required.

Most tools in this category adopt the strategy of seed-extension. The algorithms would

first extract subsequences of reads and scan in the hashtable with exact matching positions

in reference genome returned. Then these seeds would be extended until the whole read

sequence is covered. Different tools come up with different seeding methods: some of them

use non-overlapped seeds while the others use overlapped seeds; some of them require

exact matching between seeds and reference genome while some of them allow internal

mismatches. GSNAP [Wu and Nacu, 2010], OLego [Wu et al., 2013], and Subread [Liao

et al., 2013] are the representatives in that category.

BWT-FM: FM index of Burrows-Wheeler Transformer (BWT) [Salson et al., 2008] are

used in many commonly used unspliced aligners like BWA [Li and Durbin, 2009] and

Bowtie [Langmead and Salzberg, 2012]. Some spliced aligners including Tophat [Trapnell
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et al., 2009]), MapSplice [Wang et al., 2010], and HISAT [Kim et al., 2015] make use

of those unspliced aligners for read segment alignment. BWT-FM index is typically 0.5

to 2 bytes per nucleotide, depending on details of implementation. For example, human

genome takes 2 to 8 GB of memory.

Suffix array: As more and more high performance computing resources are used in ge-

nomics research and the price of RAM becomes lower and lower, tools with larger memory

requirements are emerging as most of them come up with higher mapping speed. Many

of them are taking suffix array as indexes, such as STAR [Dobin et al., 2013] and Seg-

menhlp [Hoffmann et al., 2009].

There have been some published literature [Engström et al., 2013, Grant et al., 2011]

performing comprehensive comparisons between existing spliced aligners. No single tool

dominantly performed the best. But Tophat1/2 [Trapnell et al., 2009, Kim et al., 2013],

MapSplice1/2 [Wang et al., 2010], STAR [Dobin et al., 2013], and GSNAP [Wu and Nacu,

2010] outperform others in most evaluation metrics and are also current widely used ones.

1.3.3 Gene fusion and circular RNA detection using RNA-seq

Fusion genes are hybrid genes resulting from breakage and rejoining of two previously

separate genes, which are always related to chromosome rearrangements, translocation,

and inversion. Though fusion transcripts appear to be rare compared to regular transcripts,

they potentially undertake important biological functions. Some of the fusion genes have

been proven to be cancer indicating events such as the TMPRSS2-ERG fusion in prostate

cancer [Tomlins et al., 2008]. When reads spanning fusion breakpoints are mapped back
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Figure 1.7: Fusion transcripts are formed from two separate transcripts. In this figure, three
exons from the pre-mRNA in Gene 1 and two exons from the pre-mRNA in Gene 2 formed
the fusion transcript. (Figure partially adapted from Wikipedia (www.wikipedia.com))

to reference genome correctly, they will be split into two or more inter-gene segments.

Most of the existing spliced aligners lack the ability of handling that kind of alignments.

Though some fusion transcript detection tools like Tophat-Fusion [Kim and Salzberg,

2011], deFuse [McPherson et al., 2011], and SoapFuse [Jia et al., 2013] have been de-

veloped and published in recent years, many problems remain unsolved. First of all, most

of those tools take regular spliced alignment results as input, but this “post-processing”

methods are biased naturally as many of fusion reads would be forced to map onto refer-

ence genome collinearly which impairs the sensitivity. Secondly, their performance largely

depends on how well the embedded regular spliced aligner works. But as mentioned pre-

viously, many of the regular spliced aligners are not ready for the data from the evolving

sequencing platforms. Last but not the least, false discovery rates for the current tools are

still too high, partly due to the “whole genome spread” features of fusion reads.

Reads from circular RNAs are also always be neglected by existing spliced aligners.

A previous study shows that circular RNAs are the predominant transcript isoform for

hundreds of human genes in diverse cell types [Salzman et al., 2012]. The key point of

circular RNA detection is the correct alignment of back splicing reads. In Figure 1.8, exon2
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Figure 1.8: An example of circular RNA comprised with two exons from the regular tran-
script.

Figure 1.9: Origins of back-splicing reads on circular RNA and their alignment on refer-
ence genome.

and exon3 comprise the circular RNA, and can be identified with the back-splice reads and

their alignments in Figure 1.9. In the past two years, though circular RNA detection tools

are emerging such as CIRI [Gao et al., 2015] and KNIFE [Szabo et al., 2016], most of them

not only share the same problem with fusion detection tools – high dependency on regular

spliced aligners, but also are limited in their functionality – only back-splices between

annotated exons are considered [Gao et al., 2015].

1.3.4 Large scale RNA-seq data query

The past decade has witnessed an explosion of sequencing data fuelled by a significant

drop in sequencing cost. The growth of sequencing data has surpassed Moore’s law - the ex-

pected growth of the computation speed - i.e., more than doubling every year [Kahn, 2011].

The Sequence Read Archive (SRA) has established itself as an invaluable sequencing data

repository. It contains over 40,000 RNA-seq samples from more than 7,000 projects, with

petabytes of data from a broad range of species, experiment conditions, and sequencing
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technologies.

Sharing data through SRA ensures reproducibility. More importantly, by reusing and

re-purposing existing datasets, researchers can generate and test new hypotheses without

having to repeat similar sequencing experiments, which are often time-consuming and cost-

inefficient. However, accessing the sequencing data through SRA is not as convenient as

one may prefer. The search function in SRA only supports metadata queries, providing

links to relevant sequencing datasets. Obtaining biological results still requires download-

ing dozens of gigabytes of data, if not more, and tremendous bioinformatics support to

reanalyze the data.

An emerging computational problem with an urgent but unmet need is how to query

large transcriptome sequencing data, which are highly diverse in different tissues, diseases,

and experimental conditions besides species. For example, a biologist has discovered some

novel transcript isoforms in his/her experiment, and he/she may want to explore how com-

monly this previously uncharacterized transcript may occur in existing SRA datasets. As of

now, such a population-level query cannot possibly be answered without downloading and

reanalyzing all sequencing datasets, which is infeasible. Computational algorithms capable

of supporting such routine query will bridge a considerable gap between biologists and the

sequencing data and have potential to impact how biologists conduct research every day.

In the past year, numerous efforts have been pioneered to facilitate queries over large-

scale RNA-seq data. These efforts can be roughly divided into two categories: supporting

query over pre-analyzed results and enabling query against raw sequencing reads. The first

approach often provides a search engine on top of comprehensive genomic features sum-

marized from the analysis of each sample using state-of-the-art bioinformatics pipelines.
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One such example is Snaptron [Wilks et al., 2018], which supports the query of splice pat-

terns generated from large-scale pre-analyzed human RNA-seq data. The latter approach,

however, aims to build indexes that allow for the query against raw sequencing data. It

is alignment-free, reference-free, and the most faithful to the sequencing data. SBT (Se-

quence Bloom Tree) is the pioneering approach in making large-scale sequence search

feasible [Solomon and Kingsford, 2016]. SBT can be considered as a binary tree with

each node implemented as a bloom filter. Each bloom filter is a compact, probabilistic data

structure for storing a large set of k-mers present in one or more samples. Within the tree,

each leaf node stores the information of a single sequencing sample, while each internal

node summarizes all the k-mer information of all samples in each branch. Sequence query

over SBT is a depth-first traversal of the tree - visiting relevant nodes in the tree one after

the other - and avoids the need to load the entire SBT into the memory at once. Although

SBT owns a binary tree structure, it does not naturally lend itself to anything like the regu-

lar binary search. This is because the content of any two dividing branches is not disjoint.

A query over the tree may require the traversal of the entire tree rather than a single path

as in typical binary search.

1.3.5 Taxonomic classification of metagenomics sequencing data

Metagenomics is the study of genomic content obtained in bulk from an environment of in-

terest, such as the human body [Huttenhower and Human Microbiome Project Consortium,

2012], seawater [Venter et al., 2004], or acidic mine drainage [Tyson et al., 2004]. Metage-

nomics studies often generate tens of millions of sequencing reads to capture the presence

of microbial organisms and quantify their relative abundances, rendering the classification
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and analysis of these data a logistical challenge.

One of the major computational challenges in the analysis of metagenomic data is the

classification of each sequencing read into the most-specific biological taxon to which se-

quence conservation supports its assignment. Specifically, a read is classified as belonging

to a taxon if it has high sequence similarity with the reference genomes collected for that

taxon, a process made possible by the large deposits of reference sequences collected in

recent years for a variety of microbial species. In 2014 alone, more than 10,000 sequence

records were newly added to the NCBI RefSeq database thanks to the accessibility of NGS

technology.

Existing classification methods can be divided into two broad categories: alignment-

based and alignment-free. The former approach, implemented most popularly as BLAST [Altschul

et al., 1990], assigns each read to the taxon that affords the best alignment with its reference

genomes. Several methods, including MEGAN [Huson et al., 2007], PhymmBL [Brady

and Salzberg, 2009], and NBC [Rosen et al., 2011], apply additional machine-learning

techniques to BLAST results to increase classification accuracy. These methods are often

slower than BLAST alone, rendering them computationally prohibitive for large-scale anal-

ysis of many millions of short reads. However, the recent development of Centrifuge [Kim

et al., 2016] has significantly improved the scalability of the alignment-based algorithm

using FM-index. Besides using genomic sequences as the reference, the recently published

tool Kaiju [Menzel and Krogh, 2015] performs alignments towards protein sequences,

achieving faster classification speed than existing tools.

The other line of work, pioneered by LMAT [Ames et al., 2013] and Kraken [Wood

and Salzberg, 2014], classifies a read using exact k-mer matches between the read and ref-
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erence sequences belonging to the target taxon, thereby avoiding inefficient base-by-base

alignment while maintaining sensitivity and specificity comparable to the alignment-based

approach. This approach is faster than alignment-based methods and allows for greater

flexibility in reference material because it requires only the collection of k-mers extracted

from reference sequences belonging to each taxon. Thus k-mers extracted from DNA or

RNA sequencing data can be included as reference material without being assembled, in-

creasing the sensitivity of the algorithm in capturing natural variants that are often missed

using reference genomes alone.

1.4 Dissertation Statement

This dissertation aims to build novel computational methods for Next Generation Sequenc-

ing data analysis. It covers three different but closely related areas, including: accurate and

comprehensive RNA-seq read sequence mapping for transcriptome characterization, scal-

able sequence query over large-scale RNA-seq data, and efficient taxonomic classification

of metagenomics sequencing data.

1.5 Contributions of this dissertation

We have developed a series of novel computational methods for Next Generation Sequenc-

ing data analysis, including sequence mapping, query, and classification. And the perfor-

mance of each of those methods is assessed using a number of simulated and real datasets.

The experiments demonstrate their advantages on sensitivity and accuracy of sequence

analysis, and computation-wise performance (speed, storage, and memory usage) com-
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pared to other state-of-the-art methods. This dissertation may contribute to the following

four areas.

Accurate alignment of RNA-seq reads and detection of splice junctions, gene fusions,

and circular RNAs The major innovation of MapSplice3 is its context-aware alignment

through self-learning. This improves both the sensitivity and specificity of read alignment

as well as the mapping completeness of the whole read. Context-aware alignment refers to

subject-specific transcriptome features which include genome-wide transcriptome splicing

structure and structural variation. Importantly, Context is learned from the intermediate

alignment generated in the first phase of MapSplice3. These intermediate alignments may

be incomplete, but are reliable because relatively long segments or clusters of segments

are required to avoid random alignments in that phase. These reads are then used collec-

tively to derive transcriptome features of the subject. Additional filtering approaches are

applied to minimize errors in the context. Using that context data overcomes the diffi-

culty of completing and solidifying alignments with a pure reference genome. In addition

to regular transcript read alignment, MapSplice3 simultaneously detects gene fusion and

circular RNA transcripts accurately. Different from the other gene fusion/circular RNA de-

tection approaches that serve as a separate and post-processing step, MapSplice3 provides

a systematic and unified solution to align reads from both regular and irregular transcripts.

Individualized RNA-seq read alignment for personal splice junction detection and

unbiased reference allele ratio estimation Existing algorithms that utilize a standard

reference genome as a template sometimes have difficulty in mapping reads that carry ge-
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nomic variants. These problems can lead to allelic ratio biases and the failure to detect

splice variants created by splice site mutations. To tackle those challenges, we have devel-

oped a novel approach called iMapSplice that enables personalized mRNA transcriptome

profiling. The algorithm makes use of personal genomic information and performs an un-

biased alignment towards genome indices carrying both reference and alternative bases.

Importantly, this breaks the dependency on reference genome splice site dinucleotide mo-

tifs and enables iMapSplice to discover personal splice junctions created through splice

site mutations. Also, the experiments demonstrate that iMapSplice significantly alleviates

allelic ratio biases with minimal overhead in computation time and storage.

Super fast transcript sequence query over large scale datasets The third computa-

tional method described in this dissertation is one of the first tools that support super-fast

large-scale sequence query against thousands of datasets. It is two orders of magnitude

faster than current state-of-the-art tools without loss of accuracy and compromises in mem-

ory usage. It achieves great compression ratio and can support query over tens of terabytes

raw sequencing data using a standalone desktop computer. We conducted two experi-

ments: annotated protein-coding transcript query over 148 equine RNA-seq datasets and a

global survey of gene fusion transcript sequences over the whole TCGA Pan-Cancer RNA-

seq datasets. Both of the two experiments demonstrate its capacity of providing accurate

and efficient reference-free, alignment-free, and parameter-free sequence queries against a

large number of datasets.
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Efficient taxonomic classification of metagenomics sequencing reads Metagenomic

read classification is a critical step in the identification and quantification of microbial

species sampled by high-throughput sequencing. Although many algorithms have been

developed to date, they suffer significant memory and computational costs. Due to the

growing popularity of metagenomic data in both basic science and clinical applications, as

well as the increasing volume of data being generated, efficient and accurate algorithms are

in high demand. We introduce MetaOthello, a probabilistic hashing classifier for metage-

nomic sequencing reads. The algorithm employs a novel data structure, called l-Othello [Yu

et al., 2017], to support efficient query of a taxon using its k-mer signatures. MetaOthello is

an order-of-magnitude faster than the current state-of-the-art algorithms Kraken and Clark

and requires only one-third of the RAM. In comparison to Kaiju, a metagenomic classi-

fication tool using protein sequences instead of genomic sequences, MetaOthello is three

times faster and exhibits 20-30% higher classification sensitivity.

The open-source software packages for the algorithms developed in this dissertation

are open source and publicly available to the research community.

Copyright c© Xinan Liu, 2018.

21



www.manaraa.com

Chapter 2 Comprehensive RNA-seq read alignment with MapSplice3

A critical and fundamental step of mRNA-seq analysis is to map the RNA-seq reads onto

a reference genome correctly. Evolving sequencing technologies are generating longer

reads, and current software programs (aligners) are not capable of dealing with these data.

In this dissertation, we introduce novel computational solutions in a new version of the

splice alignment tool MapSplice. MapSplice version 3.0 (MapSplice3) achieves high read

alignment and base mapping yields while providing high sensitivity and specificity of splice

junction discovery. In addition to the regular mapping of reads to a reference genome, Map-

Splice3 performs context-aware local alignments to detect spliced structures and SNPs.

A novel splice junction classification method also significantly improves the accuracy of

identifying splice junctions. Comprehensive comparisons with RNA-seq datasets, which

include varying read lengths and error profiles, demonstrate that MapSplice3 is an accurate

and sensitive RNA-seq aligner.

2.1 Introduction

In parallel to the evolution of sequencing technologies, there has been a rapid development

of computational tools to analyze high throughput transcriptome data. One of the first and

most critical steps in analyzing sequencing data is the alignment of raw reads back to the

selected reference genome. In the past few years, numerous software programs for the

alignment of read sequence have been developed and refined. These include, but are not

limited to, Tophat 1/2 [Trapnell et al., 2009, Kim et al., 2013], MapSplice1/2 [Wang et al.,

22



www.manaraa.com

2010], GSNAP [Wu and Nacu, 2010], Subread [Liao et al., 2013], OLego [Wu et al., 2013],

STAR [Dobin et al., 2013], and HISAT [Kim et al., 2015]

While existing aligners have been quite successful in supporting traditional applica-

tions such as gene expression measurements, challenges in attaining accurate read align-

ments to support more advanced RNA-seq applications remains a significant unmet need

in the arena of RNA-seq analyses. Research utilizing RNA-seq technology has repeatedly

demonstrated that changes in biological function are often reflected in the transcriptome

and can provide valuable insight into disease pathogenesis. However, an area that lacks

systematic support from RNA-seq aligners is the detection of transcripts that break the nor-

mal and natural form of mRNAs involving upstream exons followed by downstream exons

from the same gene locus. Gene fusion is one such example where transcripts from two re-

motely located gene loci are joined together. Fusions have been identified as biomarkers in

a variety of tumor types with clinical relevance. A second example is circular RNA where

downstream exons are found to be contiguous with upstream exons. Both fusion transcripts

and circular RNAs are excluded from conventional spliced aligners. While dozens of tools

specialized in gene fusion or circular RNA detection have been developed. Most of these

tools conduct a post-processing of unmapped reads that failed to be resolved by aligners.

Such approaches, however, cause many issues. First, the set of unmapped reads from dif-

ferent aligners may vary significantly as their mapping sensitivities are never the same,

and as a result, so are the parameters to dispense unmapped reads. Secondly, non-linear

23



www.manaraa.com

transcripts co-exist with their regular counterparts and often share a significant portion in

sequence as well as splice donor and acceptor sites. Detection of them sequentially at

different stages of the analysis misses the opportunity to use the information from one to

disambiguate and optimize the other. Additionally, more stringent criteria are frequently

applied in the detection of fusion reads to avoid false positives. This will result in lower

read coverage in these junctions, biasing the downstream transcript quantification analysis.

Another area where deviation from the reference genome sequence may be problematic

is in the study of allele-specific expression (AE). The analytical goal of AE is to determine

the relative expression of specific transcripts from each of the two parental haplotypes.

Typical AE analysis seeks to capture this information by differentiating the counts of RNA-

seq reads carrying either the reference or alternative alleles at heterozygous sites in an

individual. As such, accurate read alignment is critical to derive the correct relative AE.

However, current aligners are often biased in favor of mapping reads that are consistent

with reference genome, since nucleotide variants in the alternative alleles are considered as

mismatches to the reference genome. The bias in the read alignment may ultimately affect

the accuracy in quantifying AE in many sites of interest [Castel 2015].

Also, further advancement of sequencing technologies and read lengths is poised to

challenge alignment software programs in the near future. We have witnessed the exten-

sion of most short-read data from 25bp to 100-150bp within the past decade. This pro-

gressive increase in read length has helped in disambiguating read alignments, particularly

in repetitive regions of the genome. Today, the Illumina MiSeq platform is able to produce

300bp reads with high quality. It is expected that similar read lengths may become the

standard output for the more commonly used Illumina HiSeq platform in the near future.
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Importantly, these improvements will endow greater accuracy to transcript reconstruction

and quantification, splice junction detection, as well as structural variation calling. How-

ever, a current limitation of state-of-the-art aligners is that they are optimized for reads

100bp in length. As read lengths increase beyond 150bp, the accuracy of these programs

for both alignment and splice junction detection declines dramatically. Longer reads re-

sult in a higher chance to at least partially map the reads to a reference genome. The

challenge becomes determining the exact composition of an alignment, i.e., what specific

transcript features an alignment consists of. These features include splice junctions (donor

and acceptor sites) and structural variations including SNPs, small indels, and fusion tran-

scripts. Any given read may contain a combination of these features. With the advent of

longer reads, resolving the complexity of these features using gapped alignment may result

in increased detection of false positive junctions. This will be made more challenging if

lower quality base calling is present in longer reads. As such, obtaining end-to-end com-

plete alignments with accurate transcriptome feature composition becomes an even more

difficult task. Given these challenges, an alignment program that can achieve excellent

alignment accuracy and splice junction detection for RNA-seq reads longer than 100bp is

an emergent need.

MapSplice3, a new version of MapSplice software, provides a systematic and unified

one-stop solution to align both regular and irregular spliced reads. MapSplice3 is suited

to align both short (≤ 100bp) and medium-sized reads (≤ 500bp). The major innovation

is context-aware alignment through self-learning. Context refers to subject-specific tran-

scriptome features that include genome-wide transcriptome splicing (regular and irregular)

structure and structural variations. MapSplice3 learns the individual context during the
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alignment process and uses this information for more sensitive and unbiased mapping.

The implementation of MapSplice3 utilizes a two-level suffix array-based index struc-

ture for both global and local alignments. It is highly scalable, with speed and memory

competitive to current state-of-the-art aligners for regular spliced alignment. If the detec-

tion of irregular transcripts is also considered, it is orders of magnitude faster than existing

two-step pipelines. MapSplice3 is also easy to use and parameter free. In this dissertation,

we compare the performance of MapSplice3 and a number of popular alignment programs

using both simulated and real datasets. MapSplice3 outperformed other software tools in

accuracy of splice junction detection especially on challenging datasets, such as those with

longer reads and higher error rates. Such performance extends to the alignments of reads

sampling gene fusion and circular junctions, as well as reads carrying alternative alleles.

2.2 Overview of MapSplice3 algorithm

MapSplice3 adopts a two-phase alignment strategy. In phase I, the program maps each read

individually against the entire reference genome to identify candidate mapping positions.

Transcriptome context is learned from the candidate alignments in this phase. Although

these alignments may be incomplete, they are reliable because relatively long segments

or clusters of segments are required to avoid random alignments in this first phase. Ad-

ditional filtering approaches are applied to minimize errors in the context. In the second

phase, MapSplice3 uses the transcriptome context to complete partially aligned reads from

Phase I. The context serves two purposes: firstly, it guides the alignment towards a subject-

specific transcriptome structure. This increases the sensitivity and completeness of the

alignment. Secondly, spurious alignments that result from random sequence matches are
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reduced. An overview of the MapSplice3 pipeline is shown in Figure 2.1.

2.3 Global alignment with semi-maximal mappable prefix search

MapSplice3 first looks for long segments of a read that can be mapped continuously to the

reference genome, as shown in step 1, Figure 2.3. This is done by repetitively applying

prefix searches starting at the beginning of a read using a suffix array index of the entire

reference genome. The matching of a prefix stops at the base in a read where it does not

match anywhere in the reference genome. This is typically due to mismatches, indels or

splice junctions. The algorithm will then jump over this base and restart the prefix search

for the rest of the read sequence until the last base of the read is included in a prefix.

The prefix search employed by MapSplice3 is not the typical maximal prefix search, in

which only the mapping location of the longest match is returned. MapSplice3 returns all

mapping positions with a match longer than a certain threshold (set at 30bp by default). We

call this semi-maximal prefix searching, an approach chosen because the longest sequence

match does not always lead to the correct alignment. For example, reads spanning two

exons from a gene may map continuously to a related pseudogene locus, where the two

exons are already adjoined and the intron between them absent. In this case, a maximal

prefix search strategy would only return the mapping position in the pseudogene and ignore

the mapping in the parent gene. In contrast, the semi-maximal prefix search will include

both loci as candidate mapping locations. In general, this method is much more sensitive

in recovering alignments to regions with high sequence similarity.

Iterative semi-maximal prefix searching naturally divides read sequences into segments

of variable lengths. Although a minimum alignment of 20bp is required for any cluster
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Figure 2.1: An overview of MapSplcie3 algorithm. MapSplice3 algorithm contains two
tiers: global alignment with semi-maximal mappable prefix search (1∼4), and context-
aware local alignment to splicing structures, genomic sequences with mutations, and refer-
ence genome (5 and 6).
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to be considered further, some segments are relatively long, uniquely mapped, and more

supportive of the read alignment. In contrast, other segments, especially shorter segments,

can often be mapped to multiple positions in the reference genome. Segments with too

many mapping possibilities (such as segment S4 in Figure 2.1) would be considered as

unmapped at this step. Their alignment will be resolved in step 3 of Phase I or in Phase II.

Segment alignments are clustered together if they are closely positioned on the genome

and if their relative order is consistent with that in the read (step 2, Figure 2.1). It is

noteworthy that there can be more than one cluster for each read. This often corresponds to

multiple candidate locations in repetitive regions of the genome. At each candidate cluster,

there may be gaps between two neighboring segments. If the length of a gap falls in the

range of a potential intron, a spliced alignment is attempted. The spliced alignment seeks a

split position within a segment that maximizes the sequence similarity between the divided

segments and the corresponding donor and acceptor sequences in the reference genome

(step 3 of Phase I in Figure 2.1). In case of unusually high mismatches around a splice

site, a second alignment allowing small indels or even a small exon will be conducted

and accepted if a significant reduction of mismatches can be achieved. MapSplice3 uses

both canonical and semi-canonical splice site flank strings (GT-AG, GC-AG, AT-AC) to

help determine the split position in the read. Non-canonical splice sites are allowed in the

absence of canonical or semi-canonical ones.

If a read spans two gene loci as a result of a gene fusion event, its alignment may

consist of two clusters that are located at a distance on the same chromosome, on different

chromosomes, or with different strand orientations. In the case of circular RNAs, the

alignment of two neighboring segments will be in the reverse order of each alignment.
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Based on the segment mapping in step 2, MapSplice3 is able to identify these events from

the fact that two neighboring segments in the read are mapped to positions in the genome

that are inconsistent with regular transcripts. With the extraction of appropriate donor and

acceptor site sequences, the spliced alignment algorithm is applied to identify the exact

splice site by matching the corresponding unmapped subsequences from the read to the

donor and the acceptor sequences in the reference genome.

The last step in Phase I assembles aligned segments of a read and, if applicable, com-

bines it with the alignment from the paired read at the other end to achieve a mate-pair.

2.4 Context-aware local alignment

Many reads obtain complete alignment at the end of Phase I. However, a significant pro-

portion of reads remain partially aligned or unmapped. This is exacerbated by longer reads.

In a partial alignment, the mapping of one or more parts of the read is missing. Frequently

this includes a trailing prefix or suffix of a read as depicted by S4 and S5 in Step 4, Figure

2.1. Processing these segments during the global alignment phase may result in spurious

alignments and significantly increase the running time. The number of short, ambiguously

mapped segments is reduced by localizing them to the region identified by the aligned por-

tion of their read and its pair. Phase II of the MapSplice3 program leverages this localized

information to complete the alignment.

Phase II alignment is termed Context-Aware Local Alignment. This localized align-

ment involves two approaches. Firstly, MapSplice3 attempts to align unmapped sequences

to the reference genome in the localized region using similar steps to Phase I. Unlike Phase

I, however, where the search space is the whole genome, in Phase II, the search space is

30



www.manaraa.com

restricted to the region where the rest of the read and the corresponding mate-pair have

already been mapped. This significantly reduces the number of spurious alignments for

short segments. Secondly, a short trailing segment of a read is often unmapped due to

one of the following reasons: (1) it spans a splice or fusion junction, or (2) it includes a

variant allele relative to the reference base. If these features were known a priori, it would

be possible to target the alignment directly. Frequently, however, these features are not

provided as input. Nonetheless, given the depth of the RNA-seq data, these transcriptome

features may already be available from other reads that were successfully mapped in Phase

I. Thus, MapSplice3 can derive transcriptome features from Phase I alignments. In com-

parison to the first approach, which is an ab initio alignment based entirely on sequence

match, the approach in Phase II is more specific and informed by subject-specific features

already determined. Overall, the MapSplice3 algorithm uses both approaches to resolve

partial alignments in the second phase. Combined, this reduces the issue of false discov-

ery of splice junctions due to short anchors while improving the sensitivity of splice site

alignments.

2.4.1 Alignment to splicing context

Splice junctions derived from Phase I alignments form the basis of the splicing context. The

accuracy of these splice junctions is derived from using segments at least 20bp in length on

both donor and acceptor sites for their discovery. Junctions involving repetitive sequences

are removed to reduce false positive splice junction reporting. For example, a splice junc-

tion where the sequence at the acceptor site has a high similarity with the downstream

flanking sequence at the donor site (or a sequence at any of its alternative acceptor sites)
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Figure 2.2: Examples to illustrate how splicing context and mutation context are derived.
(A) An example of splicing context. Splice site sequence pairs represented with green bars
are examined for junction consolidation. A splice junction will be excluded if two paired
sequences are identical or similar to each other. (B) An example of mutation context. Two
of the five mismatch positions are identified as candidate SNPs because they have high read
coverage concordance.
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would not be reported (Figure 2.2A). In Figure 2.2A, the green bars represent examples

of sequence pairs to be examined for junction consolidation. The edit distance between

the alternative acceptor site sequences is computed using the Smith-Waterman algorithm

(REF). A splice junction will not be included in the splicing context if the edit distance is

calculated to be very small. This filtering strategy is very effective at reducing false positive

splice junction reporting. This is independent of read coverage and enables the retention

of correct junctions even with low read coverage. In addition to the junctions derived from

read alignments, splice junctions derived from transcript annotation can be used as input to

augment the splicing context.

MapSplice3 allows the rapid interrogation of alternative splicing sites given the location

of a partial alignment and the sequence of the unmapped segment. This is facilitated by

using a two-level hashtable. The first level hash table supports splice site searching and

the second level hashtable stores the information of paired alternative splicing sites at any

individual site, either donor or acceptor. The key to access the second level hash table is a

sequence segment (30 bases by default), which can uniquely identify the isoforms entering

(or exiting) the splice site. The information stored includes support numbers, splicing

signals, and features (splice junctions, indels, and mismatches) detected on the other end

of the splice site and supporting alignments. Given the location of the existing partial

alignment, donor or acceptor sequences connected to this location will be retrieved from

the splicing hashtable and matched to the querying segment.
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2.4.2 Alignment to mutation context

Reads carrying SNPs relative to the reference genome reduce mapping efficiency and ac-

curacy. This is especially true when the sequence variant is in proximity to the read end,

a splice junction, or another mutation. As a consequence, the inability to align reads will

cause an allelic bias, hindering downstream analysis, such as allele-specific expression.

To alleviate this issue, SNP information is inferred and included as part of the context to

facilitate alignment.

During the Phase I alignment, mismatched bases in all alignments are recorded. Resolv-

ing true SNPs from technical sequencing errors is a significant challenge. Only nucleotide

variants supported by sufficient reads and consensus mismatches are retained as candidate

SNPs. Figure 2.2B depicts an example of this event, five mismatches are shown, but only

two positions illustrate high concordance identifying them as candidate variant alleles. To

facilitate previously unaligned read segment mapping against genomic regions containing

candidate SNPs, enhanced suffix array-based indices for SNP-mers are built. Each SNP-

mer corresponds to a segment of genomic sequence carrying the alternative nucleotide

positioned in the middle of the sequence. Thus, with the SNP-mer indices, segments con-

taining variant alleles, like segment S5 in Figure 2.1, can be correctly mapped through the

semi-maximal prefix searching method.

Partially aligned reads with unmapped segments are dealt with by mapping them to

their neighboring region. For every single-end read, regions 300kbp downstream and up-

stream are considered. In the case of paired-end reads, the local region is further limited

by the mapping location of its mate-pair, either downstream or upstream. Within identified
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local regions of a read, the trailing segments are mapped to the reference genome with a

pre-built local index using a similar approach to Phase I. The local index is built for the

reference sequence of each genomic region in a fixed window size (3000K by default). A

similar approach has been used in the HISAT program (REF), significantly improving the

efficiency of short segment mapping position searching. This ab initio alignment strategy

enables MapSplice3 to discover short overhang splice junctions which would otherwise be

missed in Phase I due to the short length of the anchor segments and lead to ambiguous

genome-wide mapping.

In the last step of the MapSplice3 algorithm, segments aligned in both phase I and II are

assembled to generate the final alignments. Segments that cannot be aligned at this stage

are soft-clipped, but included in the alignment files.

2.4.3 Pooled context from multiple datasets.

It is typical for RNA-seq experiments to include biological replicates in the sample set.

Samples with the same or very similar biological contexts are likely to carry similar sets of

splice junctions and genomic variants. Context derived from intermediate alignments not

only have the potential to facilitate the mapping of reads from that single sample but also

possibly improve the mapping of reads from biological replicates in the same experimental

group. Splice junctions that cannot be resolved in one sample due to low coverage may

be identified in other samples. Thus, borrowing contexts from biological replicates has the

potential to facilitate the mapping of spliced reads that might otherwise be missed with

independent analyses that are limited only to individual samples. MapSplice3 provides

an option for processing multiple samples simultaneously with a pooled context (Figure
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Figure 2.3: (A) The regular mode of MapSplice3 that utilizes unshared context: datasets
are processed separately, and context derived from each dataset will only be used during
the context-aware local alignment of reads from the same dataset. (B) The alternative mode
of MapSplice3 that utilizes shared context: context from multiple datasets are pooled, and
can be utilized for reads from any datasets.

2.3B). In this situation, each dataset is processed separately in the global alignment of

phase I. However, context derived from intermediate alignments from each sample is then

pooled and utilized for the remaining alignments in phase II.

2.5 Experimental results

2.5.1 Performance comparison on regular read alignment

Aligners, datasets, and metrics used in comparison

We performed a comprehensive evaluation of MapSplice3. A number of datasets including

both synthetic and real datasets with different read lengths are used for the assessment.

These datasets are detailed in Table 2.1. A variety of metrics to measure read mapping,
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Table 2.1: Overview of simulated and real datasets.

Data Total read # Read length Experiment

L100 20,000,000 100 Simulated
L200 20,000,000 200 Simulated
L300 20,000,000 300 Simulated
H100 20,000,000 100 Simulated
H200 20,000,000 200 Simulated
H300 20,000,000 300 Simulated
R101 190164184 avg=96 fetal lung fibroblasts
R262 7,050,382 avg=228 GM12878

10 Geuvadis 324,900,974 avg=74 lymphoblastoid
datasets cell lines

Table 2.2: Overview of metrics for aligner performance assessment.

Metric Description

Splice junction Sensitivity Proportion of detected true junctions among all true
junctions in ground truth.

Specificity Proportion of detected true junctions among all
detected junctions

Coverage correlation Pearson’s correlation of junction read coverage
between alignment and ground truth.

Mapping rate Read Proportion of mapped reads among all reads

Base Proportion of mapped bases among all bases

Allele coverage
correlation

Reference Pearson’s correlation of allele read coverage between
alignment and ground truth for reference allele at SNP

coordinates.
Alternate Pearson’s correlation of allele read coverage between

alignment and ground truth for alternate allele at SNP
coordinates.

splice junction discovery, as well as allelic biases are reported. The explanation of the

metrics are listed in Table 2.2. We compare MapSplice3 against a number of the state-of-

the-art aligners.

We next compare MapSplice3 using self-learned context with a number of State of the

Art aligners. These include MapSplice2 (version 2.1.7), Tophat2 (version 2.0.12), HISAT

(version 0.1.4-beta), STAR (version 2.4.0.1) and GSNAP (version 2014-10-22). The de-

fault settings were used for all those tools. For both STAR and HISAT, their 2-pass mode,

37



www.manaraa.com

Figure 2.4: Read alignment yield in simulated datasets. Shown is the number of reads
in ground truth and mapped by each aligner. Mapped reads are categorized according to
the number of splice junctions detected. There is no splice junction in “Unspliced” reads.
“SingleSpliced” and “MultiSplcied” reads contain one and more than one splice junctions
respectively.

Figure 2.5: Read alignment yield in real datasets. Shown is the number of reads mapped
by each aligner. Mapped reads are categorized according to the number of splice junctions
detected. There is no splice junction in “Unspliced” reads. “SingleSpliced” and “Multi-
Splcied” reads contain one and more than one splice junctions respectively.

namely, STAR 2-pass and HISATx2 are chosen for the comparison as they outperform their

one-pass partner in accuracy and are more popularly used in real applications.
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Figure 2.6: Distribution of base mapping rates along read sequence in simulated data. Total
percentages of mapped bases for each base along the read sequence are counted and plotted
for each aligner.

Alignment Yield

To evaluate the completeness of the alignment, we compute the read mapping rate, i.e., the

proportion of the reads that are reported with an alignment to the reference genome regard-

less of the length of the alignment. Results are included in Table 2.7. In low error simulated

data, MapSplice3 and GSNAP achieve a consistent high mapping rate over 99% in all three

datasets with varying read length (L100, L200, and L300) followed by STARx2. Longer

read length becomes problematic for HISAT and TopHat2, whose read mapping rates drop

to around 70% with 300bp reads even in low error data. STARx2 shows conflicting results
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Figure 2.7: Distribution of base mapping rates along read sequence in real data. Total
percentages of mapped bases for each base along the read sequence are counted and plotted
for each aligner.

with higher mapping rate in 100bp and 300bp reads but lower mapping rate in 200bp reads.

Further investigation shows that STARx2 adopts different mapping strategies for short and

long reads for the trade-off of performance. Its result on 200bp may be improved if the long

read alignment strategy is applied. The trend of the comparison on read and base mapping

rates in high error simulated data (H100, H200, H300) are consistent with low error data

with MapSplice3 and GSNAP being the most very sensitive in mapping. High error rates

did reduce the alignment yields of HISATx2 and Tophat2 significantly to below 40% while

others still maintain a mapping rate over 95%. GSNAP fares best in the mapping rates in

two real datasets R101 and R262, followed closely by MapSplice3 and STARx2.

We also collect the base mapping rate, which is the proportion of total read bases that

are mapped. The base mapping rate should be exactly the same as read mapping rate if

every base of a read is mapped. However, only HISAT and Tophat2 strictly enforce that

rule. Other aligners, such as MapSplice, GSNAP, and STAR, will report partial alignments

of a read if deemed confident without requiring all bases mapped, resulting in a slightly
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Figure 2.8: True positive rate (TPR) vs. false positive rate (FPR) (ROC-curve) for discov-
ered splice junctions on simulated datasets. TPR is definded the same as sensitivity, which
is the fraction of successfully detected true junctions among all true junctions. While FPR
is defined as the fraction of falsely detected splice junctions among the total splice junc-
tions.

lower base mapping rate than read mapping rate. The trimming of part of an alignment that

cannot be mapped is called soft-clipping. The difference between base mapping rate and

the read mapping rate indicates the extent of soft-clipping. For example, With L100 data,

GSNAP shows higher read mapping rate than MapSplice3 but lower base mapping rate,

demonstrating that more bases are soft-clipped in GSNAP than in MapSplice3.

To further understand that extent of soft-clipping, we plot the base mapping rates along

each read position from the beginning to the end of the reads as shown in Figure 2.6 and
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Figure 2.9: The number of annotated splice junctions vs. the number of unannotated splice
junctions detected by each aligner on the real datasets.

Figure 2.7. In general, the higher the curve, the higher the mapping rate. MapSplice3

and GSNAP are consistently in the top pack outperforming other aligners in terms of base

mapping rate across all datasets. The difference in the shape of the curves represents the

difference in soft-clipping. HISAT and TOPHAT show a straight line along all read posi-

tions meaning no soft-clipping is conducted at any base. In contrast, other aligners show

curves with different degree of drops towards the ends of the reads. These drops corre-

spond to lower base mapping rate at these locations as a result of soft-clipping. GSNAP

and STARx2 exhibit sharper drops than MapSplice3 in most of the datasets, with the de-

gree of drops increases as the reads get longer. This is true especially for STARx2. This

suggests that STAR and GSNAP fail to map many short sequences at the ends of reads,

therefore, more aggressive soft-clipping has to be applied than that in MapSplice3. On

the other hand, it also demonstrates that the context-based local alignment in MapSplice3

successfully salvages the alignment of short sequences which may be trimmed otherwise.

Completely forbidding soft-clipping as enforced by Tophat2 and HISATx2 does not
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Figure 2.10: Correlation of splice junction supporting read numbers between aligners’
results and ground truth in all the six simulated data sets. Each point in the scatter plot
represents supporting numbers for one splice junction in aligners’ results (X axis) and
ground truth (Y axis).

improve the base mapping rate. On the contrary, it significantly reduces the read mapping

rate since it does not report an alignment even if 99% of a read can be confidently mapped.

The situation worsens as reads get longer or becomes noisier. The low mapping rate may

potentially hamper the downstream gene expression analysis by causing low abundance or

biases in gene expression.
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We next examine specifically how well the aligner discovers spliced reads. To do this,

we divided alignments into three categories: alignments that do not span any splice junction

(unspliced), alignments that span only one splice junction (single-spliced) and alignments

that span more than one splice junctions (multi-spliced). We then compare the distribution

of alignments in each category against the ground truth. The results are shown in Fig-

ure 2.4 and Figure 2.5. As the read length gets longer from 100bp to 300bp, it is expected

that the number of splice junction including one or more splice junctions will increase.

This is shown in the stacked bar corresponding to the ground truth. However, different

aligners show significant differences in the ability of mapping single-spliced and multi-

spliced reads. The distribution of the three classes of alignments reported by MapSplice3

resembles most to ground truth, while other aligners reported relatively lower portions of

single-spliced and multi-spliced junctions especially on the long read datasets with high

error rates. Additionally, while GSNAP has the highest mapping rate overall, it reported

the least amount of multi-spliced reads in all datasets.

High accuracy in splice junction discovery and coverage

An important utility of RNA-seq data is the detection of splice junctions which plays pivotal

roles in detecting new genes or isoforms as well as quantifying alternative isoforms. Splice

junctions can be derived directly from the spliced alignments.

To examine the performance of splice junction discovery, we compute the sensitivity,

specificity and F-1 measure. The sensitivity of the splice junction discovery is the pro-

portion of correct junctions identified through alignments out of all ground truth junctions.

The specificity represents the proportion of false junctions out of all junctions identified
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in the alignments. F-1 measure measures which are the harmonic mean of sensitivity and

specificity, are also calculated and shown to combine the two metrics. The result are shown

in Table 2.7 GSNAP demonstrates the highest sensitivity with splice junction discovery in

most of the datasets, closely followed by MapSplice3. However, its high sensitivity also

comes with the worst specificity, meaning that it reports the most of false positive splice

junctions in almost all datasets. In contrast, MapSplice3 significantly outperforms other

aligners in the specificity in all datasets, achieving both high sensitivity and high speci-

ficity in all datasets, as indicated by the F-1 measure.

For real data, detected splice junctions are compared with gene annotations, only those

match splice junctions in annotation within 5bps are considered as annotated ones. In R101,

compared with MapSplice3, only GSNAP and HISATx2 reported larger numbers of splice

junctions which have been annotated in Ensembl. However, the numbers of unannotated

splice junctions for GSNAP and HISATx2 almost doubles that of MapSplice3. In R262,

as mentioned several times before for the advantage of MapSplice3 on mapping longer

reads, MapSplice3 discovered the largest number of annotated junctions with the highest

precision.

One common procedure to filter out spurious splice junctions is to apply a threshold

on the minimum number of reads supporting a splice junction. A splice junction will be

filtered if its total supporting reads fall below the threshold. Given a list of splice junctions,

we may calculate sensitivity and specificity each time we raise the support threshold, al-

lowing us to examine the tradeoff between sensitivity and specificity through ROC curves.

Figure 2.8 includes the ROC curves for each aligner. The ROC curves illustrate the true/-

false positive rates of splice junction detection compared with ground truth given different
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thresholds of splice junction supporting read numbers in simulated datasets. Each point in

the ROC curves was computed with the detection (discrimination) threshold given by the

number of reads mapped across each junction, i.e. for each aligner only junctions supported

by at least N reads were selected for each point along the ROC curves, with N varied from

1 (the lowest threshold) to 1000 (the highest threshold). With the curve closer to the left

border, the aligner is considered to have higher accuracy in splice junction detection. And

with the curve closer to the top border, the aligner is considered to be more sensitivity in

mapping splice junctions. The curve corresponding to MapSplice3 consistently sits closest

to the top left corner of the figure, showing its superior sensitivity and precision in splice

junction discovery in varying read length and in both low and high error datasets.

Besides the identity of splice junctions, the accuracy of splice junction coverage, which

is the number of spliced reads spanning a splice junction, is also important for downstream

analysis. For example, spliced reads are critical in parsing out both identify and quantity

of alternative isoforms. The lack of coverage of spliced reads may lead to lower estimated

abundance. To evaluate the accuracy of splice junction coverage, we drew scatter plots

between ground truth coverage and coverage derived from the ground truth for all correctly

discovered junctions. Figure 2.10 includes the coverage scatter plots for each aligner on

each simulated dataset. The closer the points to the diagonal the more accurate the cover-

age. Points above the diagonal represent deficiencies in read coverage when some spliced

reads are failed to be mapped. Points below the diagonal represent more read coverage

than the ground truth which indicates false spliced alignments are reported. The spread

of the points represents that none of the aligners are perfect in obtaining all the spliced

alignments. However, in comparison, the points shown in the scatterplots of MapSplice3
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are much more closely packed towards the diagonals than other aligners, demonstrating

the highest overall correlation to the ground truth. Unlike other aligners, where the spread

of the points becomes looser as the reads get longer, MapSplice3 shows an opposite trend

with a tighter spread, showing its capability in recovering spliced long reads.

Accurate Alignments Alleviate Bias in Allelic Ratio

When mapping reads to the reference genome, reads carrying alternative bases at SNP

coordinates would have an extra mismatch compared to those with reference nucleotide. In

some cases, this extra mismatch would prohibit aligners from mapping the read correctly,

sometimes leading to a partial alignment or completely incorrect alignment. Consequently,

the percentage of the alternative alleles at a SNP location may be biased. To assess each

of the aligners in their capabilities in reducing the allelic bias on a genomic scale, we

counted the read coverage of reference and alternative nucleotides at each SNP position

and calculated the Pearson Correlation relative to the ground truth from simulated datasets.

In general, when working with low error datasets, all the aligners achieved relatively high

correlations (higher than 90%) for either reference or alternative nucleotides, except for

reference allele coverage reported by Tophat2. However, when error rate becomes higher,

along with less mapped reads and bases, HISATx2, STARx2, Tophat2, and GSNAP all

exhibited low correlations in at least one dataset. Only MapSplice3 and GSNAP maintained

high correlations (higher than 90%) with ground truth in all the three datasets for both of

the types of alleles, which is consistent with the high mapping rates observed from their

performance in high error datasets.
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Figure 2.11: Summary of splice junction discovery and read mapping rates for aligners
with 10 datasets from Geuvadis RNA sequencing project. (A) (B) Number of annotated
splice junctions detected by each aligner on the 10 datasets. (C) Number of unannotated
splice junctions detected by each aligner on the 10 datasets. (D) Read mapping rates for
each aligner on the 10 datasets.

Performance improvement achieved with context

We first investigated the effectiveness of the context-aware alignment. Alignments were

run on the simulated datasets under three configurations: Phase I only alignment without
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any context, 2-Phase alignment with self-learned context and 2-Phase alignment with per-

fect context. The perfect context was obtained directly from the ground truth data. The

summary of MapSplice3 performance under different configurations were reported in Ta-

ble 2.6.

In general, leveraging context in terms of splice junctions and SNPs significantly im-

proves the alignment performance over the one where context is not used. The improve-

ments are across the board, including more accurate splice junction detection, higher read

and base mapping rates as well as alleviated allelic biases at SNP locations. The biggest

improvements lie in the relatively difficult cases when the reads are relatively short or the

error rate of the reads are high. For example, for 100bp reads, MapSplice3 gains around 4%

(L100) and 8% (H100) in splice junction prediction sensitivity, and around 2% and 8% in

base mapping rate with self-learned context. In this case, context derived from a collection

of reads may provide extra knowledge to complete the alignment of individual reads/bases

that cannot be mapped otherwise. One important aspect that context helps solve is the

misalignment of “short anchor ” specific to spliced reads. To detect splice junctions and

map read sequences across them confidently, a sufficiently long (12bp) and error-free se-

quence anchoring on either side of the splice junction is always required. But in shorter and

higher error rate reads, more anchor sequences are short or imperfect. Self-learned context

will lower the requirement to align these sequences by guiding the alignments towards the

specific context while completing the alignments. Another improvement is the reduction

of mapping bias between the reference and the alternative allele at the SNP location, evi-

denced by the higher correlation of coverage between the alignment and the ground truth

in both reference and alternate alleles.
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Alignments using perfect context performed the best but perfect context are not avail-

able in real applications. However, results using self-learned are very close to that using

perfect context, suggesting that the self-learned context would provide high-quality align-

ment provided sufficient amount of reads. Another observation from this comparison is

that even with perfect context including all the splice junctions and SNP locations with a

dataset, the alignments are not perfect, which reflects the nature of potential ambiguity in

read alignment besides possible improvement to be incorporated including other context

like small indels.

Pooled context improves splice junction discovery sensitivity

We additionally performed an experiment on a larger scale with ten samples from Geu-

vadis RNA sequencing project. Besides running the other five tools and MapSplice3 under

the regular mode, we also applied MapSplice3 with pooled context as described in Fig-

ure 2.3B. Splice junction discovery results and read mapping rates were reported in Figure

2.11. For splice junction discovery results, together with numbers of detected annotated

and unannotated splice junctions, F-measure was also calculated and shown to combine

the two metrics. Specifically, MapSplice3, as well as HISATx2 and GSNAP, detected the

most annotated splice junctions. But at the same time, MapSplice3 reported much less

unannotated splice junctions, regardless of using pooled context or separate context. And

all the aligners, except for HISATx2 and Tophat2, exhibited strong mapping capability,

with achieving relatively high read mapping rates higher than 95%. Compared to the regu-

lar mode of MapSplice3, with pooled context, its overall performance was improved with

having more reads mapped, achieving higher F-measure, and detecting more annotated
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Figure 2.12: (A) Base mapping rates along the read sequence reported by each aligner in
both untrimmed data and trimmed data. (B) Distribution of total mismatches in alignments.

splice junctions, though slightly more unannotated splice junctions were also reported.

Soft-clipping enables MapSplice3 on handling untrimmed data

The first step in processing raw reads is to trim the adapter sequences and low quality bases.

One popular software to do this is Trimmomatic [Bolger et al., 2014], which removes the

detected bases from adapter sequences as well as those with low qualities (Q score lower

than 5). This is often called hard-clipping. While the trimmed data would be of high

quality, sometimes, it may throw out too much data. For example, in the R101 data, about
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87% of total reads survived the trimming process. In the meantime, a lot of paired reads

become unpaired as one of the paired reads is contaminated with adapters. Removing a

significant amount of reads may bias the library size, leading to inaccurate downstream

analysis. In this experiment, we would like to investigate whether aligners may retain more

reads by soft-clipping the adapter sequences during the alignment process. We apply the

aligners MapSplice3, and STARx2 to R101 data both before and after adapter trimming.

For comparison, we also apply HISATx2 to the same data to examine the results without

soft-clipping.

Figure 2.12A presents the base yield results while applying each aligner to either

dataset. In general, MapSplice3, and STARx2 exhibit significantly higher base yield with

raw reads (10%) than with trimmed data. In contrast, HISATx2 generates 75% alignments

with raw reads, even lower than trimmed reads. This is because HISATx2 will not align

reads that are partially contaminated with adapters. Adapter trimming step is crucial here

to remove this adapter sequences to facilitate mapping by HISATx2.

To evaluate the effectiveness of soft-clipping in removing adapter sequences, we try to

search for adapter sequences in the alignment of raw reads by applying Trimmomatic again

on alignments by MapSplice3 and STARx2. Only 0.0006% bases were identified as from

adapters in MapSplice3’s reported alignments. This suggests that soft-clipping is effective

in automatically removing adapters.

To further examine the quality of the salvaged alignments when applying MapSplice3

and STARx2 to the raw reads, we plotted the distribution of total mismatches in align-

ments of these aligners in both trimmed and untrimmed data as shown in Figure 2.12B.

Interestingly, every aligner has a very different upper bound of total mismatches. With
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untrimmed data, STARx2 reports alignments with mismatches up to 70. There is 1.22%

total alignment (around 4.2 million) with mismatches greater than 5. A closer look at these

aligned reads suggests that many of the mismatches are in the low quality bases, meaning

STARx2s soft-clipping is not effective in removing bad bases. Although the inclusion of

such mismatches does not significantly decrease quality score of the alignment, the con-

fidence of these alignments is low, making them questionable for downstream analysis.

In contrast, MapSplice3 shows the most consistent trend of mismatch distribution of the

alignments before and after trimming. HISATx2 exhibits fewer mismatches than STARx2

as its “end-to-end” alignment restriction naturally declines those alignments with adapters

and low quality bases. However, the errors in the untrimmed data did increase slightly.

Conclusively, the soft-clipping mechanism adopted by MapSplice3 not only enables

itself to report more alignments and mapped bases with untrimmed data (compared to

HISATx2 and its results on trimmed data), but also avoids spurious alignments caused by

adapters and sequencing errors efficiently (compared to STARx2). Additionally, the results

of soft-clipping are consistent with the hard-clipping applied by trimmomic in removing

adapters. However, it successfully salvages about 10% reads with confident alignments

that would be removed due to insufficient length by trimming.

2.5.2 Fusion transcript prediction results

In addition to splice junction detection and spliced read alignment, MapSplice3 can also be

used for fusion transcript discovery. To assess the fusion detection capacity of MapSplice3,

we applied it to both synthetic and real datasets that were used in a previously published

study [Liu et al., 2015] to compare a list of the State of the Art fusion detection software.
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Table 2.3: Fusion detection results on synthetic datasets (5X, 20X, 50X). Symbol * marks
the top 3 tools in terms of F1 score.

5X 20X 50X
Tools True False F1 True False F1 True False F1

MapSplice3 66 0 0.61* 133 3 0.93* 135 3 0.94*
SOAPfuse 116 9 0.84* 136 18 0.89* 137 22 0.89*
FusionCatcher 96 13 0.74* 108 17 0.79* 108 19 0.78*
JAFFA 43 2 0.44 83 13 0.67 88 14 0.70
EricScript 67 9 0.59 104 12 0.78 107 13 0.78
chimerascan 63 10 0.57 102 22 0.74 104 25 0.75
PRADA 17 0 0.20 50 1 0.50 56 2 0.54
deFuse 16 1 0.19 69 7 0.61 52 5 0.50
FusionMap 31 0 0.34 73 7 0.63 86 13 0.69
Tophat-Fusion 29 7 0.31 46 11 0.44 53 14 0.49
MapSplice 21 3 0.24 40 7 0.41 42 10 0.42
BreakFusion 42 14 0.41 82 33 0.62 100 39 0.69
SnowShoes-FTD 2 1 0.03 3 1 0.04 3 1 0.04
FusionQ 47 7 0.46 53 11 0.50 64 18 0.55

Table 2.4: Fusion detection results on synthetic datasets (100X, 200X). Symbol * marks
the top 3 tools in terms of F1 score.

100X 200X
Tools True False F1 True False F1

MapSplice3 135 5 0.93* 137 5 0.94*
SOAPfuse 139 26 0.88* 138 23 0.89*
FusionCatcher 108 20 0.78* 109 21 0.78*
JAFFA 88 16 0.69 88 16 0.69
EricScript 104 13 0.78* 106 13 0.78*
chimerascan 105 30 0.74 105 30 0.74
PRADA 57 2 0.55 57 3 0.54
deFuse 73 9 0.63 104 13 0.78*
FusionMap 92 27 0.68 98 50 0.66
Tophat-Fusion 53 14 0.49 56 15 0.51
MapSplice 51 8 0.49 51 9 0.49
BreakFusion 106 44 0.71 107 47 0.70
SnowShoes-FTD 3 1 0.04 3 1 0.04
FusionQ 81 18 0.65 45 8 0.44

They have generated five synthetic datasets with different fusion coverages (5X, 20X, 50X,

100X, 200X) were used. The reads in those data sets are all 100 base pairs long and

simulated from the same set of 150 synthetic fusion transcripts. The real datasets are

generated from 4 breast cancer cell lines (BT-474, SK-BR-3, KPL-4, and MCF-7) and
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Table 2.5: Fusion detection results on real datasets. Symbol * marks the top three tools in
terms of F1 score.

Breast cancer Melanoma
Tools Validated Invalidated F1 Validated Invalidated F1

MapSplice3 16 19 0.173 7 9 0.084*
SOAPfuse 20 48 0.183* 10 98 0.078*

FusionCatcher 19 48 0.175 3 6 0.026
JAFFA 16 16 0.176* 2 2 0.026

EricScript 16 67 0.137 3 67 0.027
chimerascan 19 96 0.143 5 189 0.029

PRADA 15 22 0.160 3 4 0.038
deFuse 19 116 0.133 10 189 0.057

FusionMap 6 126 0.043 2 85 0.017
Tophat-Fusion 15 58 0.135 4 25 0.045

MapSplice 16 37 0.158 5 39 0.052
BreakFusion 15 1923 0.014 6 3092 0.004

SnowShoes-FTD 15 5 0.176* 4 1 0.052
FusionQ 4 453 0.013

FusionHunter 13 10 0.150 4 4 0.051
ShortFuse 19 24 0.197* 7 30 0.075*

6 melanoma samples (M980409, M010403, M000216, M000921, M990802, and 501Mel).

27 and 11 previously experimentally validated fusions are used as the underlying truth for

the evaluation.

We compare the fusion detection results by MapSplice3 to the fusion detection re-

sults by other software [Liu et al., 2015]. The results are included in Table 2.4 (synthetic

datasets) and Table 2.5 (real datasets). Only SoapFuse are among the top three tools in all

the 5 simulated datasets and 2 real datasets. And MapSplice3 outperforms other tools in all

of the 5 simulated datasets and 1 real dataset. Besides, FusionCatcher and ShortFuse also

show competitive capacity in simulated data and real data respectively.
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2.5.3 Circular RNA detection results

To evaluate circular RNA detection capacity of our algorithm and compare it with other

tools, we ran MapSplice3 and STAR on four real datasets (with accession numbers SRR1636985,

SRR1636986, SRR1637089 and SRR1637090) from a previous study [Gao et al., 2015],

and compared their results with that reported by CIRI in that study. These sequencing data

sets are generated from HeLa cells based on ribominus RNA sequencing with or without

RNase R treatment. Each dataset contains 13 to 43 million pairs of 101 bp reads. And

24 circular RNAs predicted by CIRI were experimentally validated in the same study. In

our run, MapSplice3 successfully recovered all of them, while STAR detected 21. Also,

the numbers of spanning reads identified by each tool for each back splicing events were

collected and plotted in Figure 2.13. It reveals that MapSplice3 is a highly sensitive tool on

circular rna detection as it not only successfully detected all validated back splicing events

but also assigned relatively more reads spanning them.

2.5.4 Running time and memory requirements

Speed benchmarks were performed with the servers from Lipscomb High Performance

Computing in the University of Kentucky. And the servers are equipped with Dual In-

tel Xeon CPUs E5-26708@2.60GHz and 64GB of 1600MHz RAM. The mapping speed

and memory usage for each aligner are presented in Figure 2.14. In general, HISATx2

achieved the highest speed, followed by STARx2. MapSplice3 is not as fast as HISATx2
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Figure 2.13: Number of supporting reads identified by different tools for each back-splice
junction. Both MapSplice3 and CIRI discovered all the 24 experimentally validated back
splice junctions, while STAR missed 3 of them (the 12th, 21th, and 24th in the figure).

and STARx2, but is in the same pack and greatly outperformed GSNAP, Tophat2, and

MapSplice2. And interestingly, as shown in Figure 2.14A, aligners especially HISATx2

and STARx2 perform differently on datasets with different read lengths and error rates.

MapSplice3 requires a relatively high memory of 36 GB for mapping reads to the human

genome. The requirement would not increase with the size of data sets, as MapSplice3 only

loads the suffix array index of the reference genome and a fixed size of reads into mem-

ory. And as the RAM price keeps dropping and high performance computing resources are

commonly used in the large-scale genomic data research today, the memory requirements
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Figure 2.14: Million bases mapped per second by each aligner on (A) simulated datasets,
R101, R262, and (B) ten datasets from Geuvadis RNA sequencing project. (C) Memory
requirements of spliced alignment software.

are not that expensive than before.

2.6 Conclusion

RNA-seq plays a more and more prominent role in profiling the transcriptome. In a typ-

ical RNA-seq analysis pipeline, the first and fundamental step is to correctly obtain the

alignment of RNA-seq read onto the reference genome.

In spite of the many aligners that have been published, and those in development, this

problem is far from being solved. Many significant improvements have been achieved com-

pared to first-generation tools. The difficulty of correct alignment to a reference genome

comprises several aspects. One such issue is the complexity of reference genome, es-

pecially where there are abundant repetitive sequences. In terms of size, long repetitive

sequences can mislead whole reads to incorrect positions. Short repetitive sequences may

cause the misalignment of parts of the read, which leads to false splice junctions reporting.

The large number of genomic variants and possible sequencing errors in RNA-seq makes

58



www.manaraa.com

it challenging to identify unique and correct alignments for reads. Identical repeats cause

ambiguity in read mapping. Repeats with sequence similarity can lead to incorrect, but

unique placements of the whole or a part of a read, as aligners map reads with the least

edit-distances. However, this is not always the correct mapping position. Another diffi-

culty arises from evolving sequencing technologies. The length of reads generated contin-

ues to increase. Longer reads can significantly reduce the ambiguity of mapping caused by

repetitive sequences in a reference genome. However, with longer read sequences, more

biological features, such as single nucleotide variants, indels, and splice junctions, are cov-

ered. Additionally, longer reads are coincident with more sequencing errors. Currently,

most aligners are designed and optimized for short reads (no longer than 100bp) and are

ill-equipped to deal with longer reads. An unmet need is a tool that can cope with the dif-

ficulties of longer reads. MapSplice3 adopts several strategies to deal with these problems

and, as such, bridges this gap. To demonstrate MapSplice3’s ability to align RNA-seq reads

with varying lengths and error profiles, we used six simulated datasets and three real data

sets, and compared the alignment results of MapSplice3 with five popular tools. In these

comparisons, different metrics were used to evaluate the aligners’ performance. These out-

put measures included read alignment yield, base yield, coverage of splice junctions, and

the sensitivity and specificity of splice junction discovery. MapSplice3 demonstrated su-

periority over other tools across these aspects and outperformed other tools on the most

challenging datasets that have long reads and high error rates. Additionally, using datasets

containing gene fusions and circular RNAs, we demonstrated that MapSplice3 could ef-

ficiently align reads from those irregular transcripts. In those experiments, compared to

other tools, MapSplice3 exhibits competitive accuracy and sensitivity in detecting both
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Table 2.6: Summary of splice junction discovery performance, read / base mapping rates,
and read coverage correlation at SNPs in simulated datasets reported by MapSplice3 with
three different configurations.

Mapping rate Junction Allel Corr

Data Tools Total
Read

Unique
Read

Correct
Read

Total
Base

Sensi Speci F1 Cov.
Corr

Refer Alter

None 99.18 98.24 97.37 97.70 92.63 99.25 95.28 .9682 .9723 .9863
L100 Learned 99.88 98.82 98.24 99.75 96.35 98.94 97.63 .9976 .9767 .9982

Perfect 99.88 98.99 98.44 99.77 98.30 99.08 98.69 .9978 .9806 .9995

None 99.75 99.37 98.71 98.88 97.03 99.36 98.18 .9834 .9700 .9970
L200 Learned 99.94 99.50 99.23 99.84 98.20 99.34 98.77 .9986 .9744 .9997

Perfect 99.94 99.56 99.29 99.86 98.84 99.40 99.12 .9986 .9775 .9999

None 99.82 99.69 99.17 99.13 97.89 99.45 98.66 .9863 .9973 .9839
L300 Learned 99.97 99.80 99.59 99.87 98.58 99.45 99.01 .9988 .9990 .9853

Perfect 99.97 99.87 99.64 99.88 98.97 99.53 99.25 .9988 .9974 .9866

None 94.16 93.34 92.37 87.89 84.04 98.97 90.90 .9495 .9365 .9447
H100 Learned 98.36 97.43 96.14 95.65 91.82 97.91 94.77 .9961 .9518 .9709

Perfect 99.12 98.68 97.54 96.95 95.94 98.14 97.03 .9959 .9810 .9995

None 99.38 98.35 97.52 93.73 94.03 98.47 96.20 .9907 .9804 .9745
H200 Learned 99.84 98.83 98.04 97.00 95.88 97.82 96.84 .9987 .9892 .9895

Perfect 99.88 98.83 98.04 97.71 97.21 98.07 97.64 .9988 .9946 .9995

None 99.69 99.55 98.68 94.60 95.44 97.95 96.68 .9950 .9880 .9820
H300 Learned 99.76 99.59 98.96 96.66 96.57 97.36 96.96 .9990 .9943 .9881

Perfect 99.76 99.60 98.99 97.15 97.45 97.69 97.57 .9990 .9706 .9964

gene fusion and circular RNAs.
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Table 2.7: Summary of splice junction discovery performance, read / base mapping rates,
and read coverage correlation at SNPs in simulated datasets reported by MapSplice3 with
three different configurations.

Mapping rate Junction Allel Corr

Data Tools Total
Read

Unique
Read

Correct
Read

Total
Base

Sensi Speci F1 Cov.
Corr.

Refer Alter

L100 MapSplice399.88 98.82 98.24 99.75 96.35 98.94 97.63 .9976 .9767 .9982
HISATx2 98.26 96.14 95.98 98.26 96.80 96.93 96.86 .9933 .9429 .9894
STARx2 99.83 98.03 97.89 99.57 93.83 97.34 95.55 .9958 .9296 .9874
GSNAP 99.98 98.60 98.25 99.70 97.54 94.00 95.74 .9908 .9758 .9944
Tophat2 95.02 91.53 90.79 95.02 87.84 96.67 92.04 .9819 .7420 .9427
MapSplice299.64 98.94 98.18 99.48 94.92 98.98 96.91 .9942 .9836 .9789

L200 MapSplice399.94 99.50 99.23 99.84 98.20 99.34 98.77 .9986 .9744 .9997
HISATx2 93.44 92.20 92.13 93.44 97.13 97.46 97.29 .9881 .9603 .9814
STARx2 99.76 98.44 98.32 99.51 96.14 97.81 96.97 .9874 .9753 .9990
GSNAP 99.93 99.39 98.64 99.40 98.28 95.51 96.88 .9900 .9646 .9983
Tophat2 84.68 82.45 82.01 84.68 90.98 97.11 93.95 .9719 .8923 .9786
MapSplice299.55 99.67 98.58 97.30 93.63 99.10 96.29 .9855 .9863 .9939

L300 MapSplice399.97 99.80 99.59 99.87 98.58 99.45 99.01 .9988 .9990 .9853
HISATx2 84.31 83.52 83.47 84.31 95.55 97.93 96.73 .9795 .9255 .9710
STARx2 99.40 99.29 98.98 98.35 96.62 98.68 97.64 .9906 .9831 .9726
GSNAP 99.69 99.46 98.35 98.47 97.99 94.40 96.16 .9825 .9961 .9828
Tophat2 69.79 68.59 68.45 69.79 89.27 98.05 93.45 .9582 .7679 .9570
MapSplice299.33 99.82 98.66 92.47 79.80 99.26 88.47 .9577 .9465 .9483

H100 MapSplice398.36 97.43 96.14 95.65 91.82 97.91 94.77 .9961 .9518 .9709
HISATx2 59.66 58.32 58.14 59.66 81.89 93.70 87.40 .9481 .9058 .8418
STARx2 98.68 96.43 96.14 96.88 86.12 96.40 90.97 .9928 .8969 .9921
GSNAP 99.14 97.77 97.33 97.82 95.75 88.80 92.14 .9892 .9425 .9962
Tophat2 40.90 39.66 39.49 40.90 68.89 96.85 80.51 .9100 .6873 .8389
MapSplice298.40 97.64 96.66 93.92 58.77 95.89 72.88 .9791 .8960 .9729

H200 MapSplice399.84 98.83 98.04 97.00 95.88 97.82 96.84 .9987 .9892 .9895
HISATx2 13.49 13.25 13.21 13.49 53.10 97.50 68.75 .7781 .7807 .5734
STARx2 94.78 89.00 88.65 88.04 88.61 97.45 92.82 .9908 .6509 .9227
GSNAP 99.44 97.96 97.20 98.21 97.82 87.30 92.26 .9939 .9464 .9913
Tophat2 6.17 6.04 6.02 6.17 40.03 98.69 56.96 .6945 .6741 .5304
MapSplice298.02 98.66 97.3 81.35 18.14 96.72 30.55 .9226 .9352 .9671

H300 MapSplice399.76 99.59 98.96 96.66 96.57 97.36 96.96 .9990 .9943 .9881
HISATx2 2.25 2.23 2.23 2.25 21.53 98.49 35.34 .5749 .7436 .4664
STARx2 42.64 42.6 42.49 35.83 79.37 98.54 87.92 .9701 .8483 .8350
GSNAP 98.48 98.17 96.6 96.79 97.38 82.84 89.52 .9885 .9627 .9603
Tophat2 0.76 0.76 0.75 0.76 12.15 99.61 21.66 .8605 .6831 .4291
MapSplice298.46 99.53 97.9 73.31 9.99 97.31 18.12 .8521 .9082 .8590
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Table 2.8: Summary of splice junction discovery performance and read / base mapping
rates in real datasets reported by MapSplice3 and five other aligners.

Mapping rate Junction

Data Tools Read Base Annotated Unannotated

R101 MapSplice3 96.56 95.99 187,468 172,955
HISATx2 94.59 91.57 188,214 393,982
STARx2 95.94 95.60 183,702 170,395
GSNAP 96.85 95.92 188,738 421,810
Tophat2 90.84 90.84 173,218 128,410

MapSplice2 96.49 95.71 173,994 109,108

R262 MapSplice3 95.95 94.21 135,623 29,778
HISATx2 90.04 90.04 136,259 39,889
STARx2 94.42 90.16 134,782 30,047
GSNAP 97.35 95.29 135,151 49,707
Tophat2 85.48 85.48 128,658 22,824

MapSplice2 97.66 89.14 130,499 25,564
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Chapter 3 Individualized RNA-seq read alignment

3.1 Introduction

In the past decade, high throughput sequencing (HTS) has been established as one of the

major technologies to investigate the genome, epigenome, and transcriptome from tissue

samples or even a single cell. Besides its unprecedented resolution due to deep sequenc-

ing, one of the great advantages of HTS is its unbiased nature in sampling genomic con-

tent from any given subject, which is critical for the discovery of previously uncharac-

terized genomic features. Recognizing these opportunities, large studies such as TCGA

(http://cancergenome.nih.gov/) and the 1000 genomes project [The 1000 Genomes Project

Consortium, 2015] have generated both genomic data in the form of whole genome or

whole exome sequencing and transcriptomic data in the form of mRNA sequencing (RNA-

seq). Recently, an approach called G&T-seq has been developed and is capable of per-

forming parallel sequencing of both the genome and transcriptome from a single cell.

These datasets are often generated to study the relationships between genetic variation

and the transcriptome among individuals or even between specific cells. In the meantime,

the availability of these multi-omics data presents an opportunity for integrative analysis,

where information from different datasets can be borrowed to enhance the performance of

the commonly used single-omics analysis.
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As we mentioned above, sequencing is a sampling process that is subject-specific and

unbiased. Unfortunately, a level of bias can be reintroduced if RNA sequencing data are

aligned to a reference genome to understand the origin of each read. Although the current

state-of-the-art spliced aligners already perform quite well in the discovery of previously

unannotated splice junctions and even some structure variations, they almost always utilize

the reference genome of a species as the template for read alignment [Trapnell et al., 2009,

Kim et al., 2013, Dobin et al., 2013, Kim et al., 2015, Wang et al., 2010, Wu and Nacu,

2010]. The consequence of the reference-based approach is that the alignment will favor

sequences with highest identities to the reference genome. While this assumption ensures

the accurate alignment of a vast majority of the sequence reads, it can introduce bias against

a special category of reads that deviate slightly from the reference but have the potential to

be biologically significant in a specific subject. Besides noise and errors, this set of reads

is often attributed to single nucleotide variations (SNVs), small indels as well as splice

variants as a result of splice site mutations. The inability to accurately align this set of reads

is often referred to as reference bias. Its effect in generating high false positive in genotype

calls as well as allele frequency estimations has been noted in several studies involving

whole genome and exon sequencing [Brandt et al., 2015, Meynert et al., 2014]. With

RNA-seq, this reference bias can lead to a deficiency in characterizing transcripts carrying

alternate alleles instead of the reference, compromising the identification of allele-specific

transcripts that may be critical to characterizing various biological phenomena such as cis-

regulatory variation and nonsense-mediated decay [Castel et al., 2015].

Additionally, SNV can change the transcriptome through splice site mutation, where

a non-canonical splice site can be mutated into a canonical splice site, thus enabling the
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expression of alternative transcript variants. Such alterations in the transcriptome have the

potential to either cause disease directly or contribute to the susceptibility or severity of

disease [Ward and Cooper, 2010, Tazi et al., 2009, Zhang et al., 2013]. However, most

of the RNA-seq aligners rely on the canonical or semi-canonical flanking bases in the

reference genome to perform confident spliced alignments. As such, variant transcripts

in a specific individual caused by splice site mutations at non-canonical splice sites can

be substantially penalized unless this parameter is completely disabled in the mapping

software program.

A straightforward approach to solve bias introduced by the reference genome would

be to use personalized genomes, where the specific nucleotide sequence of each subject

approximated by substituting SNPs at the corresponding reference coordinates. This strat-

egy was adopted by rPGA [Stein et al., 2015] where, in addition to the reference genome,

the reads are also mapped to the subject’s two haplotype genomes. However, to perform

alignments against a personalized reference genome, the first step would be to build an

index for it. It takes hours of CPU time for the available spliced aligners to index a human

reference genome. Besides, indexing files consume five to tens of gigabytes in storage for

each genome. Thus, such an approach triples the amount of disk space and running time

required when mapping to a single genome. This does not even count the time and extra

post-processing steps necessary to merge individual haplotype’s alignment results into one

consensus alignment. Taken together, the computational requirements raised by mapping

to subject genomes would substantially limit its efficiency when aligning datasets involving

hundreds or even thousands of individuals.

In this dissertation, we propose a new approach for individualized RNA-seq alignment,
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designated iMapSplice. It makes use of personal genomic information and performs an

unbiased alignment towards a genome index carrying both the reference and any alterna-

tive bases. The approach is light-weight and does not require an index to be rebuilt for

each individual. Importantly, it breaks the computational emphasis or dependency on the

position of canonical splice site dinucleotide motifs in the reference genome and enables

iMapSplice to discover personal splice junctions created through splice site mutations. We

report comparative analyses using a number of simulated and real human datasets. The

results demonstrate improvements in general read mapping, accurate alignment yields, and

both the sensitivity and accuracy of splice junction discovery. At the same time iMap-

Splice dramatically reduces the biases in allelic ratio and discovers many personal splice

junctions.

3.2 iMapSplice algorithm

iMapSplice efficiently utilizes data provided on genomic DNA single nucleotide variants

during different steps in the MapSplice algorithm to recover read alignments that either

harbor SNV (SNPs, small indels) or contain spliced alignments flanked by mutated splice

sites. This section provides an overview of how the method works to address challenges

faced by mapping reads only to a reference genome.

The left panel in Figure 3.1 illustrates an example of how an RNA-seq read carrying a

SNP may fail to align correctly to a reference genome. The RNA-seq read in this example

carries a SNP as well as a sequencing error. One of the general strategies used in the current

fast aligners is iterative maximal prefix match [Dobin et al., 2013, Kim et al., 2015]. When

searching for a prefix carrying the SNP against the reference, the correct mapping location
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Figure 3.1: (A) An example illustrating the challenge when mapping a RNA-seq read to
the reference genome in the presence of SNPs. (B) An example illustrating how iMap-
Splice algorithm may resolve spliced alignment with SNPs as well as the basic steps of the
alignment.

will be missed because no error is tolerated in this step. More often than not, short prefix

alignments (<18bp) to random places (such as S1 and S2) are likely to be returned and have

to be filtered out. Eventually, this may result in a partial alignment (S3).

iMapSplice resolves this issue by including knowledge of the SNP in each alignment

step, as shown in the right panel of Figure 3.1. The first step of iMapSplice searches for the

exonic mapping of read segments through an approach called semi-maximal prefix match.

Different from a maximal prefix search, in which only the mapping location of the longest

match is returned, a semi-maximal prefix search returns all mapping positions with a match

longer than a certain threshold (set as 30bp by default). In this step, it simultaneously maps

reads to both reference genome as well as the exonic regions affected by SNPs, namely

SNP-mers. A SNP-mer corresponds to a segment of genomic sequence carrying the vari-
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ant nucleotide, localizing it to the middle of the sequence.

Next, read mapping segments that are adjacent to each other on the genome will be

merged. For two or more segments that are next to each other in the reads, but are separated

on the reference genome, a spliced alignment is performed to bridge the two segments. We

call this a double anchor spliced alignment. In this step, splice aligners including Map-

Splice have a high dependency on the presence of canonical dinucleotide splice donor and

splice acceptor motifs (GT-AG, GC-AG, AT-AC) to avoid false positives. However, if the

mapping software only considers the reference genome sequence, mutations in an indi-

vidual that either change normal canonical splice site dinucleotide motifs or generate new

ones can result in read misalignments. The dependency on canonical splice sites, therefore,

greatly prohibits or discourages aligners from detecting novel but functional splice junc-

tions that result from mutations which generate new canonical splice site pairings. Though

some aligners are capable of reporting noncanonical splice junctions, high penalties are

given to the alignment, which lowers mapping confidence and may lead to preference to-

wards an alternative misalignment when multiple mapping options are available for the

same read. To solve this problem, iMapSplice utilizes the information provided by nu-

cleotide variants in the target region (from a hash table of SNPs) to create a list of candi-

date canonical splice sites to help in the determination of correct splice site pairings and

improve read mapping accuracy. For example, in the second step shown in Figure 3.1B,

with the known SNP (G > T at the donor site), iMapSplice identifies the novel canoni-

cal donor splice site (GG > GT) and completes the spliced alignment of segment s2′ . In

conclusion, the SNP-aware double anchor alignment will utilize the SNP-information to
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identify personal spliced alignments that otherwise would be either missed or identified as

non-canonical splice junctions.

The last step of iMapSplice completes segment assembly, candidate alignment scor-

ing, and selection. In this step, aligned segments are assembled and different candidate

alignments are generated with different potential combinations of segments. Candidate

alignments are then scored based on the total number of mismatches, spliced alignment,

and mapped length. The one with the highest score is selected as the primary alignment for

each read. One of the most important metrics when scoring is the number of mismatches

for each alignment. iMapSplice removes the mismatches that can be attributed to SNPs.

3.2.1 SNP-mer generation

SNP-mers can be derived in two ways corresponding to two variants of iMapSplice: iMapSplice-

phased and iMapSplice-unphased. iMapSplice-phased applies when the genotype data are

available (such as in the 1000 genomes project). In this case, SNP-mers of a fixed length

kphased (201bp by default) from the two genomic haplotypes are extracted. The reference

nucleotides are then replaced with alternate nucleotides at all of the SNP positions. How-

ever, this approach cannot be generalized, since the genotype data are not available in many

studies, where iMapSplice-unphased is applied.

In iMapSplice-unphased, a combination of variable length SNP-mers is used. Let kmax

(201bp by default) and kmin (31bp by default) denote the maximum and the minimum

length of a SNP-mer, respectively. In extracting the SNP-mer for each SNP, there are three

scenarios according to the distance d between each SNP and its nearest neighbor SNP.

When d > kmax, a SNP-mer of length kmax is extracted; when kmax > d > kmin, a SNP-mer
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of length d is extracted. In the two cases above, except for the specific SNP, all of the other

bases are exactly the same as in the reference genome since there are no other SNPs within

the genomic window where the corresponding SNP-mer covers. However, when d < kmin,

there is more than one SNP within the kmin window size. This indicates a SNP-rich region.

In such cases, there are 2n−1 SNP-mer possibilities, where n denotes the number of SNPs

within that window. iMapSplice-unphased will randomly select m of them. The selection

of m value effects the performance of iMapSplice-unphased on mapping reads covering this

SNP. A small m may miss the perfect SNP-mer which matches read sequences without any

error. However, a large m could confuse the aligner as too many possibilities are provided

and also increase the running time. However, such SNP-rich regions are rare, and thus have

little impact on the overall performance. Furthermore, the selection of SNP-mer length

related parameters (kphased in iMapSplice-phased, kmax and kmin in iMapSplice-unphased)

also affects how well iMapSplice works. A SNP-mer has to be long enough to allow a

partial read segment to be confidently mapped. However, a SNP-mer that is too long may

not be necessary, as they will repeat the exact sequence from the reference genome.

Enhanced suffix array based indices of SNP-mers are built to facilitate the exonic align-

ment step (prefix match). Approximately 120,000 exonic SNPs were called for each indi-

vidual human genome according to the 1000 genomes project study. Sequence extraction

and index building can be completed in seconds, resulting in minimum overhead relative to

alignment. iMapSplice performs an iterative semi-maximal prefix match of read sequences

against both on the reference genome and SNP-mers. Segments mapped to SNP-mers will

be converted to the reference genome coordinates and will be combined with other seg-

ments mapped to the reference genome.
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3.3 Experimental results

In this section, we report the performance of iMapSplice regarding its capability for un-

biased alignment of reads harboring SNPs and for the discovery of splice junctions with

mutated splice sites.

Datasets and Setup for the Experiments

Performance was assessed using two types of data: one based on simulated RNA-seq reads

and the other using real human datasets from the 1000 genome project.

Simulated datasets: Simulated RNA-seq reads were generated by BEERS [Grant et al.,

2011] with two different mutation and error profiles. The low error reads were gener-

ated assuming a substitution frequency of 0.001, indel frequency of 0.0005 and base error

frequency of 0.005. Corresponding rates in the high error reads were increased fivefold,

0.005, 0.0025, and 0.025 respectively. For both error categories, we generated two RNA-

seq datasets with different read lengths, 50bp and 100bp. Each dataset contained 10 million

pairs of paired-end reads with the same insert length of 200 bp. Note that the simulated

data did not contain mutated splice sites and thus it cannot be used to assess the discovery

of personal splice junctions as a result of splice site mutations.

Real datasets: Seventy-four RNA-seq datasets and their corresponding genotypes were

downloaded from the Geuvadis RNA sequencing project [Lappalainen et al., 2013] and

the 1000 Genomes Browser [The 1000 Genomes Project Consortium, 2015]. Numbers of

reads in the RNA-seq datasets ranged from 44.6 million to 75.8 million. Approximately

2.5 million SNPs were detected for each individual, with roughly 83,000 of them localized
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Table 3.1: The set of tools and their index configuration used in performance comparison.

Category Name Version Index
iMapSplice iMapSplice-phased 1.0 Beta reference genome (hg19) + individual

phased SNPs
iMapSplice-unphased 1.0 Beta reference genome (hg19) + individual

unphased SNPs
Ref-based MapSplice 3.0 Beta reference genome (hg19)

HISAT2 2.0.5 reference genome (hg19)
STAR 2.5,1 reference genome (hg19)

Mask-based MapSplice MASK 3.0 Beta reference genome (hg19) + SNP loci
masked with Ns

HISAT2 MASK 2.0.5 reference genome (hg19) + SNP loci
masked with Ns

STAR MASK 2.5.1 reference genome (hg19) + SNP loci
masked with Ns

SNP-aware HISAT2 SNP 2.0.5 reference genome (hg19) + individual
unphased SNPs

HISAT2 POP 2.0.5 reference genome (hg19) + population
SNPs

rPGA 2.0.0 reference genome (hg19) + two
haplotype personal genomes

to the exonic regions according to human Gencode annotation (release 19) [Harrow et al.,

2012]. All of the RNA-seq reads in the real datasets are paired-end reads and 75 base pairs

in length.

To assess the performance of iMapSplice, we compared it to a number of publicly

available RNA-seq aligners. All of the methods, version information, and the indices used

are listed in Table 3.1. Default settings were used for all parameters.

3.3.1 Improvement in general read mapping

We first assessed improvements of read alignment performance that resulted from incor-

porating the knowledge of SNPs using the four simulated datasets. In this experiment,

we compared iMapSplice against all the “Ref-based” tools and HISAT2 SNP. The “Mask-

based” tools and rPGA are not proposed for general read mapping, and HISAT2 POP is

not applicable since the SNP data were not consistent with the population profile. We col-

72



www.manaraa.com

Table 3.2: The comparison of five baseline tools in terms of the number of accurate unique
alignments out of 20 million synthetic reads in each of the four datasets with different read
length and error profiles.

Methods Low error 50bp Low error 100bp High error 50bp High error 100bp
iMapSplice 18,931,227 19,168,761 14,934,484 16,918,697
MapSplice 18,839,058 19,121,804 13,485,776 16,378,977
STAR 18,31,6354 18,446,469 13,053,934 14,832,945
HISAT2 17,771,947 18,813,343 9,032,193 11,167,588
HISAT2 SNP 17,965,316 18,810,270 10,190,994 12,501,692

lected the numbers of accurate unique alignments reported by each method. As shown in

Table 3.2, iMapSplice achieved the highest number of accurate unique alignments in each

dataset. Incorporating SNPs into the index also improved the alignment performance for

HISAT2 in three out of the four datasets. Note that the improved alignment percentage

varied since it is a function of the percent of SNP affected reads, which is much less in

low error data than in high error data. For the subset of simulated reads that achieved an

improved accurate unique alignment with iMapSplice, we analyzed their alignment status

with MapSplice that utilizes the typical method of mapping to reference genome (Table

3.3). In general, for short reads in both the low and high error rate categories, the major-

ity of the improved reads were not mapped at all using the reference genome. Mapping

longer reads significantly improved the alignment rate, which is reasonable since the short

reads would have been more vulnerable to SNPs especially when partial alignments are

allowed. For the longer reads, iMapSplice improved the accuracy by being better able to

select correct unique alignment from multiple alignments, as well as completing partial

alignments.
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Table 3.3: Alignment categories that are improved by iMapSplice over MapSplice.

Low error
50bp

Low error
100bp

High error
50bp

High error
100bp

Total improved alignment 98,055 53,381 1,516,038 672,871
MapSplice Unmapped 47,439 1,522 947,351 165,273

Muli-Incorrect 2,494 2,686 9,186 3,261
Unique-

Incorrect
10,929 8,629 143,409 42,341

Multi-Partial 129 54 10,142 2,827
Unique-Partial 19,148 13,125 235,418 394,494

Multi 17,916 27,365 170,532 64,675
The uniquely aligned reads that are accurately detected by iMapSplice but not by MapSplice are organized
into six categories. Unmapped: reads that were not be mapped at all; Multi-Incorrect: reads that displayed
multiple incorrect alignments (none of the bases in read sequences were correctly mapped); Unique-
Incorrect: reads were mapped uniquely but incorrectly; Multi-Partial: reads with multiple alignments, none
of which were perfect, but at least one of them contained some bases in the read that were correctly mapped;
Unique-Partial: reads with a single alignment and with some bases correctly mapped; Multi: reads with
multiple alignments and one of them matched ground truth.

General splice junction sensitivity and specificity.

Splice junctions detected by the aligners were compared with ground truth. Detected splice

junctions were categorized as correct if they matched ground truth exactly at both the splice

donor and acceptor sites. We compared sensitivity and specificity of discovery in evalu-

ating aligner performance of splice junctions with at least two supporting reads. Results

are reported in Table 3.4. Sensitivity is the percentage of detected correct splice junctions

among all the true junctions. Specificity is the fraction of detected correct splice junctions

within all the detected junctions. In general and as expected, differences among the aligners

were less when using the low error and long read simulated datasets. iMapSplice achieved

the highest sensitivity in all four datasets. For specificity, iMapSplice also performed well,

achieving the highest percentage in three out of four datasets and second highest in the

other. For the two variants of HISAT2, the method making use of SNPs (HISAT2 SNP)

exhibited higher sensitivity and specificity compared to read mapping to the standard ref-

erence genome (HISAT2) in almost all the datasets (except for the sensitivity in low error
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Table 3.4: Sensitivity, specificity, and F1 score for splice junction discovery on simulated
datasets.

Low error 50bp Low error 100bp High error 50bp High error 100bp
Tools Sensi Speci F1 Sensi Speci F1 Sensi Speci F1 Sensi Speci F1
iMapSplice 90.44 98.90 94.48 97.28 98.91 98.09 77.49 97.20 86.23 93.71 97.67 95.65
MapSplice 89.67 98.89 94.05 97.17 98.87 98.01 69.92 97.39 81.40 92.16 97.50 94.75
STAR 90.35 97.50 93.79 96.41 97.18 96.79 73.37 95.52 82.99 88.57 95.73 92.01
HISAT2 89.99 97.88 93.77 96.40 97.52 96.96 61.35 96.96 75.15 74.99 95.74 84.10
HISAT2 SNP 90.13 98.18 93.98 96.35 97.70 97.02 65.36 97.02 78.10 79.09 95.52 86.53

100bp data and the specificity in high error 100bp data).

3.3.2 Reduction of biases in allelic ratio

As pointed out by Brandt et al. [2015], mapping reads to a reference genome introduces an

overestimation of reference allele frequency and underestimation of non-reference allele

frequency. Reads carrying alternative bases at SNP coordinates have an extra mismatch

compared to those with the reference nucleotide. In some cases, this extra mismatch would

prohibit the aligner from mapping the read correctly, sometimes leading to a completely

incorrect alignment or the end of the read being soft-clipped. One typical approach to

alleviate the bias is to mask all the SNP positions with “N” before mapping the reads.

Though allelic bias can be eliminated in this way, it also impairs the aligners’ mapping

ability as the reads are one more mismatch away from the reference genome. Recently

developed HISAT2 provides another strategy through incorporating both variants and the

reference genome into one graph and aligning read sequences to the graph paths. The

strategy utilized by iMapSplice to alleviate the reference allelic ratio bias is to introduce

the possibility of read mapping onto SNP-mers where alternative alleles are present.

Figure 3.2,3.3,3.4 shows the aggregated distribution of reference allelic ratio at all SNP

positions in randomly selected human RNA-seq datasets from five individuals: NA12812,
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Figure 3.2: Aggregated reference allelic ratio distribution of iMapSplice and “reference
only” methods (MapSplice, HISAT2, and STAR) on RNA-seq datasets from individuals
NA12812, NA12749, NA07056, NA06994, and NA12275.
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Figure 3.3: Aggregated reference allelic ratio distribution of iMapSplice and “mask-based”
methods (MapSplice MASK, HISAT2 MASK, and STAR MASK) on RNA-seq datasets
from individuals NA12812, NA12749, NA07056, NA06994, and NA12275.

NA12749, NA07056, NA06994, and NA12275. Compared to the other two category tools,

the ”reference-based” programs (in Fig. 3.2) show significant bias towards the reference

allele (reference allelic ratio > 0.5). Obviously, the choice of mapping strategy greatly
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Figure 3.4: Aggregated reference allelic ratio distribution of iMapSplice and “SNP-
aware” methods (HISAT2 SNP and HISAT2 POP) on RNA-seq datasets from individuals
NA12812, NA12749, NA07056, NA06994, and NA12275.

affects the allelic bias independent of the aligner algorithms themselves. In Figure 3.3,

both iMapSplice-phased and ”mask-based” methods exhibit symmetric distributions with

respect to the reference allelic ratio of 0.5. At the same time, however, iMapSplice-phased

delivers the largest number of SNP positions with at least ten supporting reads (see Table

3.5). This is very likely due to the extra mismatches introduced by masking the SNP

positions. As reported in Figure 3.4, the two variants of iMapSplice performs similarly, and

show clear advantages over the two“SNP-aware” variants of HISAT2. These relationships

are confirmed in the detailed numerical statistics reported in Table 3.5. Mean and skewness

are used to characterize the bias for each distribution. iMapSplice and MapSplice Mask

achieve the best performances in terms of mean and skewness respectively.
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Table 3.5: Summarized comparison in terms of mean and skewness for reference allelic
ratio distributions, and number of SNPs covered by at least ten reads.

Category Tools Mean Skew-
ness

SNP#(read
count>10)

iMapSplice iMapSplice-phased .501 .171 68,899
iMapSplice-unphased .503 .195 68,750

Ref-based MapSplice .530 .460 67,290
HISAT2 .563 .411 62,273
STAR .534 .327 66,768

Mask-based MapSplice MASK .502 .155 64.469
HISAT2 MASK .507 .297 63,199
STAR MASK .504 .196 66,154

SNP-aware HISAT2 SNP .522 .349 65,316
HISAT2 POP .519 .279 65,744

3.3.3 Discovery of personal splice junctions

We applied iMapSplice to datasets from 74 individuals. The numbers of detected novel

canonical splice junctions created by splice site mutations are listed in Table 3.6. In to-

tal, iMapSplice reported 1,847 novel splice junctions with at least two supporting reads

associated with nucleotide changes (mutations) that created a new canonical splice donor

and acceptor pair. Among them, 1445, 589, 280, 123, and 26 appeared in at least 2, 5,

10, 20, and 50 individuals, respectively. Additionally, we compared our results against

those recently reported in another study [Stein et al., 2015]. As shown in Table 3.6, iMap-

Splice achieved higher sensitivity, especially with junctions found in fewer individuals or

supported by fewer reads. Even for those shared by a large number of individuals and

reads, iMapSplice displayed improved performance. The eight personal splice junctions

experimentally validated previously were all successfully detected by iMapSplice.

Effects of splice site mutations on expression iMapSplice enabled the discovery of two

general types of splice site mutations: (i) the gain of a canonical splice site (GT-AG, GC-

AG, AT-AC) and (ii) the loss of a canonical splice site. We examined how these mutations
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Table 3.6: Detected personal splice junctions changing from noncanonical to canonical
with increasing numbers of supporting individuals and reads.

Read coverage threshold Reported by iMapSplice
>2 >5 >10 >20 >50

Number of >1 1,847 896 492 310 177
individuals >2 1,445 782 470 299 175
with splice >5 589 589 418 278 164

site mutated >10 280 280 280 222 133
junction >20 123 123 123 123 102
threshold >50 26 26 26 26 26

(a)

Read coverage threshold Previously reported by rPGA [Stein et al., 2015]
>2 >5 >10 >20 >50

Number of >1 380 313 237 167 86
individuals >2 308 280 219 156 82
with splice >5 208 208 192 141 74

site mutated >10 138 138 138 120 68
junction >20 69 69 69 69 57
threshold >50 9 9 9 9 9

(b )

affected steady-state expression (read counts) at the corresponding splice junctions (Table

3.7). In this experiment, we categorized all the splice junctions according to changes in

average coverage between the individuals with and without splice site mutations.

Among both types of mutated splice junctions, although many had low coverage, iMap-

Splice detected hundreds of personal splice junctions that exhibited significant expression

changes in association with the gain or lose of canonical splice site motifs.

For the mutated splice junctions in type (i), (Table 3.7A), previously non-functional

splice sites increased to 2-10 reads at 201 sites and more than 10 reads at 81 sites. In

contrast, loss of a canonical splice donor/acceptor pair (ii) significantly inhibited splicing

expression (Table 3.7B).

Mutations in specific splice sites from genes C14orf159, ANXA6, and TMEM216 are

examples of the two types of mutations. The mutation (C > T) in C14orf159 (Figure
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Table 3.7: Number of splice junctions falling into each category of average coverage
changes between the individuals with and without mutations in splice sites (a). mutated
from noncanonical to canonical; (b) mutated from canonical to noncanonical

Average coverage on mutated
junctions (canonical)

0 (0,2] (2,10] (10,+∞)
Average cover- 0 0 4,043 201 81
age on unmuta- (0,2] 30 8 2 2

ted junctions (2,10] 0 0 1 0
(noncanonical) (10,+∞) 0 0 0 0

(a)

Average coverage on mutated
junctions (noncanonical)

0 (0,2] (2,10] (10,+∞)
Average cover- 0 0 155 0 0
age on unmuta- (0,2] 872 37 2 1

ted junctions (2,10] 10 4 0 1
(canonical) (10,+∞) 7 3 0 1

(b)

3.5(a)) created a canonical donor site (GC > GT) and led to a novel canonical splice junc-

tion in two individuals NA07056 and NA06994. The same splice junction did not show

up in RNAseq data from the other three individuals without this mutation. The mutation

(G > C) in ANXA6 (Figure 3.5(b)) also created a canonical splice site (acceptor site, GT

> CT, reverse strand). However, it is different from the one in C14orf159 that converted

an annotated semicanonical splice site to a canonical splice site. It created a completely

novel splice junction (previously unannotated). The mutation (G > C) in TMEM216 (Fig-

ure 3.5(c)) affected expression at the splice junction in the opposite way. This mutation

corrupted the canonical acceptor site (AG > AC). Four individuals (NA12812, NA12749,

NA07056, and NA06994) carrying this nucleotide variant lost the canonical splice junction

that appeared in the nonmutated individual (NA12275) with the reference allele.
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(a) (b) (c)

Figure 3.5: Eamples of mutations and their corresponding impact on expression from the
creation or loss of canonical splice junctions. Bases in black are the reference nucleotides,
and those in red are alternate bases at SNP positions. The numbers in the figure show
supporting read counts for the corresponding splice junctions.

3.3.4 Super fast and space-saving indexing strategy

As mentioned in the Methods section, iMapSplice adopts a very efficient indexing strategy.

Compared to a direct approach of rebuilding the index for each personalized genome, this

strategy saves a great amount of time and space thereby lowering the risk of computational

bottlenecks with large-scale applications. iMapSplice takes less than 1 minute to build an

index and the indexing files require only around 0.32 Gigabytes in storage. In contrast, as

adopted by [Stein et al., 2015], to rebuild the index of an entire personalized genome for

each haplotype, rPGA takes approximately 86.3 minutes of CPU time creating indexing

files that are as large as 26.33 Gigabytes. Table 3.8 lists the indexing file storage usage and

the runtime of indexing and mapping for iMapSplice on the 74 RNA-seq datasets as well

as the estimated results for the other two individual SNP incorporated methods HISAT2

SNP and rPGA. iMapSplice achieved significant advantages in terms of both storage usage
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Table 3.8: Indexing file size and running time to align the 74 RNA-seq dataset reads.
Note: indexing file storage usage and run time for HISAT2 SNP and rPGA are estimated
according to their performance on a small subset of the datasets.

Tools indexing file time (hour)
storage usage (GB) indexing mapping total

iMapSplice 90.2 0.3 38.6 38.9
HISAT2 SNP 408 142 14 156

rPGA 5,845 319 44 363
Experiments were run on clusters with nodes equipped with Dual Intel Xeon CPUs E5-26708@2.60GHz
and 64GB of 1600MHz RAM.

and runtime.

3.4 Conclusion

RNA-seq is a widely adopted technique used in transcriptional profiling for a wide range of

applications including differential expression analyses, novel isoform prediction, genomic

variants calling, RNA editing, and so on. In most of these applications, especially those

that rely on a reference sequence, a critical step is to correctly map each RNA-seq read

onto the corresponding specific nucleotide coordinates in the reference genome.

However, polymorphic variants such as SNPs may potentially cause the incorrect or

incomplete alignment of reads, prohibit the discovery of personal splice junction, and skew

expression coverage in the affected regions. As a result, downstream analyses including

transcript reconstruction, alternative splicing analysis, and quantitative measurements of

transcript expression are compromised. Although statistically, they may only affect a small

proportion in each category on the whole genome, their functional importance cannot be

overlooked as evidenced by existing research [Munger et al., 2014].

Our evaluation demonstrates that iMapSplice significantly improves the accuracy of

RNA-seq read alignment by taking into account both the reference genomic sequence and
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personal SNP variants. The software performs an unbiased mapping of reads carrying ei-

ther the reference or alternative base sequence. Comparative results show that the reference

allelic ratio distribution derived from the alignment results using iMapSplice exhibits the

closest mean relative to 0.5 and the skewness value is also among the smallest ones. Those

observations demonstrate that iMapSplice significantly alleviates the reference allelic ratio

bias which is a common deficiency for sequencing read aligners. Additionally, SNP vari-

ants in an individual can generate novel canonical splice junctions or alternatively introduce

a base change that alters a canonical splice donor to splice acceptor pairing (GT-AG, GC-

AG, AT-AC). Resulting changes in splice site utilization can be functionally significant

and are important to detect. iMapSplice enhances the detection of personal splice sites

by considering both reference and individual alternate alleles in determining the optimal

alignment for each RNA-seq read.

Performance-wise, iMapSplice is a lightweight approach with minimum overhead in

both storage and running time compared to other alignment methods that are also capable

of considering individuals SNPs during the mapping process. iMapSplice can be readily

applied to the datasets collected in large consortium, such as TCGA, ICGC as well as the

1000 genomes project by taking either the original reads or the alignment file as input,

making it possible to uncover functionally important personalized transcript variants as

a result of either mutated splice site or allele specific transcript. We expect to continue

to improve iMapSplice in the near future to incorporate other structure variations such as

small indels. The alignment strategy will be fairly similar and the extension should be

straightforward.

As sequencing technologies continue to advance and it becomes more common to ob-
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tain genome sequencing (or SNPs) and RNA-seq data in parallel, we think iMapSplice has

the potential to be a widely used computational tool not only for obtaining more reliable

read alignments, but also to connect genomic mutations with functionally important vari-

ation in splice site utilization. Both of them are indispensable for the characterization of

personalized transcriptome and the realization of precision medicine.
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Chapter 4 Scalable query over large scale sequencing datasets

4.1 Introduction

As introduced in Chapter 1, The vast amount of sequencing data shared through public

databases provides invaluable resources for researchers to test hypotheses by reusing exist-

ing datasets. However, the computational solution to index and query large-scale sequenc-

ing data remains an unmet need.

Very recently, Sequence Bloom Tree (SBT) [Solomon and Kingsford, 2016] and its

improvements SBT-AS [Sun et al., 2017] and Split-SBT [Solomon and Kingsford, 2017]

were developed to retrieve sequencing experiments based on sequence content. Given a

query transcript, SBT returns the set of experiments whose sequencing reads contain a

significant proportion of k-mers present in the query. The sequence query with SBT can be

described as a process trying to narrow down the search from unions of sequencing samples

to smaller subsets and eventually to individual samples.

In this dissertation, we propose a drastically different approach to tackle this problem.

Our approach split the sequence query into multiple k-mer queries of their appearance in-

formation across all samples. The results from the k-mer query are then taken together to

determine the query results. This is achieved by a novel indexing structure, namely Se-

qOthello, which employs a compact two-level hierarchical indexing structure of k-mers.

Each node is implemented as a compact hashing classifier called Othello [Yu et al., 2017].

Given the fact that k-mers in the same transcript often co-occur, thus sharing similar fre-
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quencies across multiple samples, the entire k-mer set is divided into frequency groups

forming the bottom layer of SeqOthello. The root node of the hierarchy provides clas-

sification of a k-mer to its frequency group, the search within which further provides the

occurrence information of k-mer across all samples. We have conducted comprehensive ex-

periments on SeqOthello to compare its accuracy and scalability with those of SBT. Com-

parison of SeqOthello against SBT demonstrated its superior performance in both query

speed, disk and memory usage. All the SeqOthello implementation variants were around

two orders of magnitude faster than SBT on a large query (36,076 sequences) without loss

of accuracy and compromises in memory usage. In the meantime, SeqOthello achieves a

compression ratio of 165:1 (913:1 with compressed k-mer), compared to that of 25:1 for

SBT.

4.2 Sequencing data k-mer content

k-mers: A genomic sequence is a string composed of elements from the alphabet set σ =

〈G,T,A,C〉. A k-mer is genomic sequence of length k. For any sequence of length L, there

exist a maximum of L− k+ 1 possible k-mers. A genomic sequence can be represented

by the set of k-mers present in the sequence, for which reason k-mers are considered the

building blocks or DNA “words” of genomic sequences. By iterating through k-mers of

each read in a sequencing data, one can collect the total set of k-mers present in a sample

as well as the number of reads containing each k-mer. Jellyfish [Marçais and Kingsford,

2011] is one of the efficient programs in k-mer enumeration.
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4.2.1 Compressed k-mer

Compressed k-mers: The total number of unique k-mers can be reduced to a compressed set

by an approach called homopolymer compression (HC) transformation strategy [Au et al.,

2012]. The compressed version of a k-mer is achieved by replacing consecutive duplicate

bases with a single base. For example, a raw k-mer ”AAAAATTTCCGAAAAATTTCC”

can be transformed to ”ATCGATC”. Employing this approach, 1,099 billion possible

unique raw exact k-mers of length 20 is transformed to 7 billion compressed k-mers, achiev-

ing a compression ratio 157:1. It is important to note that two sequences carrying the same

set of exact k-mers will always have the same set of compressed k-mers. Two sequences

carrying the same set of compressed k-mers may not always but is highly likely in having

the same set of compressed k-mers.

Sequencing information of a RNA-seq sample can be reduced to the complete set of

k-mers present in its reads. The query of a transcript against this sample can be determined

by whether all k-mers in the query (or a large proportion to tolerate noise) are present in

the sample. To determine whether a sequence exists in a number of samples, one would

need the information of the occurrence of its k-mers in each sample. It will be desirable if

we have access to an occurrence map that contains such information.

The motivation behind the proposed algorithm, SeqOthello, is to provide a fast and

efficient mapping from k-mers to their corresponding occurrence maps. The specific im-

plementation is driven by the inherent similarity of occurrence among adjacent k-mers

within a biological sequence, where these k-mers are highly likely to be sequenced in one

read and/or co-sequenced in other reads of the same sequence to maintain similar cover-
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age. Such similarity extends to the occurrence map across many samples. Thus, if k-mers

with similar occurrence can be indexed together, it will ultimately improve the locality of

a search. How to identify such similarity without knowledge of annotation is a challenging

question. Without involving clustering [Simpson et al., 2009], which is beyond the scope of

the current work, we take a simple but a bit crude approach, where we divide the frequency

spectrum (0,1] of the k-mer occurrence into buckets, with each of them corresponding to a

frequency range. The k-mers are allocated to corresponding buckets based on their occur-

rence frequencies across samples. Thus, they are naturally divided into multiple disjoint

sets.

Figure 4.1 shows the two-layer hierarchy of SeqOthello. The frequency buckets storing

mapping from k-mer to occurrence map form the bottom layer. And they are indexed by

an Othello [Yu et al., 2017] in the top layer of the hierarchy. A sequence query starts

from the root to identify buckets containing all its k-mers, followed by the search of k-mer

occurrence map in each of the identified buckets. The occurrence map of these k-mers will

then be synthesized to determine the samples containing the query sequence.

4.2.2 Mapping between k-mer to occurrence map within a frequency bucket

Given a set of sequencing samples, the frequency of a k-mer is defined as the fraction of

samples where it is present as captured by sequencing reads. The distribution of k-mer fre-

quency is in a ”U” shape (Fig 4.2). This makes perfect biological sense. The low frequency

k-mers unique to one or two samples represents individual difference and noise, while the

high frequency k-mers may come from the group of house keeping genes which are re-

quired to be present in almost all samples, both of which constitute a significant fraction of
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total unique k-mers. The frequency between thus becomes more typical to k-mers repre-

senting special conditions, such as tissue specificity. We divide the frequency domain (0,1]

into b disjoint frequency ranges {r1,r2, . . . ,rb}. The k-mers whose frequency fall in ri will

constitute the frequency bucket Bi. Considers for frequency split are discussed following

implementation details of frequency bucket. The bottom layer of SeqOthello contains the

set of frequency buckets {B1,B2, . . . ,Bb}. Each frequency bucket is implemented using a

novel hashing data structure Othello [Yu et al., 2017] in order to maintain a mapping from

the k-mers to their occurrence maps. The occurrence map of a k-mer encodes the k-mer’s

presence or absence information in all samples. There are essentially two ways to store the

information. One is to store the list of sample IDs containing the k-mer; the other is to store

a bitmap where the presence and absence are encoded as 1 and 0 respectively. To optimize

the memory usage, we adopt a hybrid approach where the first approach is chosen for low

information density (such as low presence or absence), where the latter is used for the rest.

Mapping from k-mer to frequency bucket

The top layer of SeqOthello hierarchy performs the mapping from a k-mer to its frequency

bucket. The structure is determined by the total set of k-mers present in at least one sample,

i.e., ∪{B1,B2, . . . ,Bb}, and the total number of the frequency buckets b.

A typical implementation of such mapping is to use a dlog2 be-Othello structure. The

memory overhead for storing such Othello is at most 4dlog2 ben bits, where n is the number

of unique k-mers among all buckets. In order to assist memory alignment and improve

query efficiency, we recommend the value of dlog2 be to be some small powers of 2 (namely

2, 4, 8, or 16).
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4.2.3 Sequence query on SeqOthello

Given a sequence of length w and a threshold value θ , 0 < θ ≤ 1, SeqOthello reports

whether this sequence is present or not in each of the m samples.

The query process on SeqOthello works as follows. First, SeqOthello computes the

occurrence bitmap of all w−k+1 k-mers. In order to utilize the locality provided by k-mer

frequency buckets, SeqOthello first execute the Othello query on the root layer to classify

these w− k+1 k-mers into frequency buckets. Then for each frequency bucket, if there is

one or more k-mer mapped into this bucket, SeqOthello queries the second layer structure

to get the occurrence bitmap of these k-mers. Such procedure will generate all w− k+ 1

occurrence bitmaps for each of the k-mers. Then SeqOthello assembles the bitmaps into

the final result: the sum of the i-th bit of all the w− k+ 1 bitmaps is the total number of

k-mers occurs in the i-th sample. When this value is greater than θ(w−k+1), SeqOthello

reports that the sequence is present in the i-th sample.

In the above procedure, SeqOthello only accesses the root node during the first step

and all the second layer mapping structures are accessed one after another. Hence, the

memory space occupied by a node (either the root layer Othello or a second layer mapping

structure) can be released once all the queries assigned to this node finish. This property

is particularly desirable for memory-limited devices. Note that such procedure can also be

implemented for batch queries. For multiple sequences, SeqOthello executes all root layer

queries for all the sequences together and then execute the second layer query for each

frequency bucket one by one.

We have implemented three variations of SeqOthello based on different sets of k-mers
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extracted from sequencing data.

• SeqOthello-Exact. This is the default mode, where SeqOthello indexes all the k-

mers present in the sequencing samples. “Exact” is to differentiate this mode from

“Compressed”.

• SeqOthello-Compressed. SeqOthello is built on the compressed set of k-mers de-

rived from the whole set of exact k-mers using homopolymer compression (HC)

transformation strategy.

• SeqOthello-UniversalCompressed. In this case, SeqOthello is built on the entire uni-

verse of compressed k-mers, including both compressed k-mers that are present in

the sequencing data and those that are not. This variation allows us to check the is-

sue of alien k-mers by comparing with the other two approaches. It also provides us

the upper bound on the size of SeqOthello-Compressed by including all compressed

k-mers.

4.3 Transcript query over 148 equine RNA-seq datasets

In this section, we report the results of querying the previously annotated transcript se-

quences over 148 equine RNA-seq datasets [Adam, 2016].

The three implementation variations of SeqOthello are compared with Sequence Bloom

Tree (SBT), version beta v0.3.5. We are aware of two very recently proposed methods, Split

Sequence Bloom Tree (SSBT) [Solomon and Kingsford, 2017] and AllSome Sequence

Bloom Tree (SBT-ALSO) [Sun et al., 2017]. Both methods are incremental work to im-
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Input: k-mer or sequence
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k-mer frequency buckets

𝐵1 𝐵2 𝐵3 𝐵4 𝐵𝑏

acgt: {s3,s5}

cgta: {s3}

gtat: {s3,s5}

tatt: {s3,s5}

acgtatt: s3(100%)

s5(75%)

Root layer Othello 

Query: acgtatt

Assembly

acgt: B2
cgta: B1
gtat: B2
tatt: B2

Mapping k-mer to frequency bucket

Mapping k-mer to occurrence map

Occurring 
in all samples

Figure 4.1: Left: A toy example illustrating steps of sequence query over SeqOthello struc-
ture. Right: Two-layer hierarchical structure of SeqOthello (note that k-mer occurrence
map is not shown). For any given query, SeqOthello first enumerates its k-mers and maps
them to corresponding frequency buckets using the first layer Othello. Secondly, the as-
sociated frequency buckets in the second layer will be loaded into memory to extract the
occurrence map for each k-mer falling in its bucket. In the last step, occurrence maps of
all k-mers will be assembled to identify samples with the presence of k-mers more than a
certain threshold θ .
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Figure 4.2: k-mer frequency distribution in 148 equine RNA-seq datasets used in the ex-
periment section.

prove the performance of SBT by minimizing the number of nodes visited during a query.

According to their manuscripts, which are in pre-prints, SSBT showed a five-fold improve-

ment in search speed and disk usage, while SBT-ALSO achieved a two-fold improvement

in construction speed and a three to seven-fold advantage on query speed. SeqOthello
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adopts a very different strategy with much more significant overall improvement than these

two methods.

Performance of SeqOthello is generally determined by the following parameters: (1)

θ , the minimum fraction of k-mers identified in a sample in a query sequence in order to

call it as present; (2) k, the length of k-mer; (3) mincov, the minimum number of reads in

a sample containing the k-mer in order to call it present in the sample. (2) and (3) both

determine the total number of unique k-mers collected to represent each sample during

the index construction. By default, 20-mers are used and mincov is set to be 3, unless

otherwise specified. In our experiment, the frequency buckets in SeqOthello are assigned

using a very simple method, where each frequency bucket contains k-mers with exactly the

same frequency count, totaling 148 buckets.

The dataset used in our experiment consists of RNA-seq data from 148 equine samples

in order to study tissue specific gene/transcript expression under 20 varying conditions,

including equine cartilaginous tissues and induced chondrocytes [Adam, 2016]. The entire

datasets consist of 6.1 billion 100bp paired-end reads, totaling about 1.28 TB disk space.

To evaluate the accuracy of our approach, we performed a batch query of all 36,076

transcript sequences, obtained from Ensembl equine database (release 87). The query result

of each sequence is compared against the ground truth of the presence of the sequence in

each sample. RSEM [Li and Dewey, 2011b] was performed to estimate the transcript

expression in the unit of TPM (Transcripts per Million) in all these samples. The positive

result of a query includes the set of samples where the input transcript is expressed higher

than a given TPM value (1, 10, and 100 are used for our experiments) and the negative

set includes the samples where the TPM of the transcript is lower than 1. The accuracy
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is assessed by ROC curves, the correlation between the true positive rate (sensitivity) and

false positive rate (1-specificity).

In the first experiment, we look at how the accuracy of different SeqOthello variations

compare with SBT. Figure 4.3 and Figure 4.4 show the ROC curves corresponding to two

different TPM cutoffs, 1 and 100 respectively. For each point in the ROC curves, the true

positive rate and false positive rate are computed for a θ (varied from 0.5 to 1 with a step

size of 0.02). Note that θ is the minimum proportion of k-mers present in a sample in

order to call the existence of the query sequence in the sample. Larger θ requires more

proportion of k-mers present in a sample and less tolerates noises present in individual

difference. This naturally leads to small values of both true positive rates and false positive

rates.

SeqOthello-Exact shows slightly better performance than SBT across both TPM cut-

offs, with ROC curves sitting on the left side of SBT. But the difference is minimal. Note

that we do expect their performance to be similar because they use the same underlaying

k-mer and similar metric θ to determine transcript presence. The only factor makes them

different is probably the effect of alien k-mers, which will not be the same between bloom

filter and Othello.

SeqOthello-Compressed, in comparison, offers quite impressive accuracy, its ROC

curve almost overlaps with SeqOthello-Exact when the TPM cutoff is 1 (Figure 4.3), but

it has higher false positives with TPM = 100 (Figure 4.4). The major difference between

the two methods is that the same sensitivity and specificity of SeqOthello-Compressed are

obtained at a much higher θ (0.9-0.96) than that of SeqOthello-Exact (θ=0.8). This means

that it requires more fraction of compressed k-mers than exact k-mers in order to distin-
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guish the presence and absence of a query sequence. That indeed makes sense because we

are trying to use a much smaller set of compressed k-mers to represent the information of

exact k-mers. One compressed k-mer may correspond to multiple exact k-mers. Thus they

are more likely to show up in a sequence as random noise. A more stringent θ is required

to weed out false positive query result.

Next we evaluate the effect of alien k-mers, the k-mers that are not present in any sam-

ple, to the query. Othello [Yu et al., 2017] is a probabilistic hashing classifier and will not

give 100% accurate query result for alien k-mers. The SeqOthello-UniversalCompressed

considers the complete set of compressed 20-mers. Therefore, no k-mers in the compressed

format are alien to them. The ROC curves of SeqOthello-Compressed and SeqOthello-

UniversalCompressed almost completely overlap with each other in both figures, with

slightly better specificity in the latter approach. This demonstrate that alien k-mers does

not pose a major issue in the accuracy of sequence query. The problem is mitigated by the

requirement of many k-mers in a sequence.

To further evaluate the capability of the model in eliminating real false positives, we

query 60,730 mouse transcript sequences from mouse Ensemble gene annotation release

M12 towards SeqOthello indexing equine sequencing reads. Using the default setting,

there are only 6 of the total 60,730 queries towards SeqOthello-Exact returned occur-

rence in at least one sample. We then used the BLAT tool (https://genome.ucsc.edu/cgi-

bin/hgBlat?command=start) to search those query sequences against the equine genome

(cab2). All of them were successfully aligned with a minimum score of 54, showing that

they are likely to be homologous genes. This exercise demonstrated that the k-mer based

sequence query methods are highly reliable.
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Figure 4.3: Comparison of transcript sequence query results between SBT and SeqOthello
implementation variants. Transcripts with TPM≥1 were considered as present in a sample.
Transcripts with TPM<1 were considered as absent in a sample.

Query accuracy as a function of transcript expression, mincov, and k

We next conducted a number of experiments to understand the behavior of SeqOthello in

different parameter settings. In this experiment, SeqOthello-Exact is used. We first look

at the accuracy of the algorithm in detecting transcripts with different expressions. Three

TPM cut-offs, 1, 10, and 100 are used to determine the positive set of transcript pres-

ence. Figure 4.5 shows that query sensitivity increases significantly with higher transcript

expression.

To investigate whether the mincov affects the query accuracy. mincov is the minimum

number of reads in a sample required to support a k-mer in order to call its presence.

Note that k-mers with support smaller than mincov will be removed from consideration
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Figure 4.4: Comparison of transcript sequence query results between SBT and SeqOthello
implementation variants. Transcripts with TPM≥100 were considered as present in a sam-
ple. Transcripts with TPM<1 were considered as absent in a sample.

in order to remove noise. Figure 4.6 presents the ROC-curves when different mincov are

applied to construct SeqOthello. It shows that higher mincov significantly minimizes false

positive rates while almost maintaining the same sensitivity, suggesting that mincov = 10

or even mincov = 20 can be more desirable in real applications if false positive is more of a

concern. Figure 4.7 showed the effects of k-mer length on the performance. While longer

k-mers have shown advantages in other sequencing application, such as metagenomics,

the improvement offered by 31-mer over 20-mer in SeqOthello are not quite significant in

querying performance, suggesting 20-mer might be the most cost-efficient way to build the

system, as it is much smaller in size.

All the experiments were performed using the servers from Lipscomb High-Performance
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Figure 4.5: Accuracy in terms of ROC-curves for transcript sequence query results reported
by SeqOthello-Exact as a function of expression levels.

Computing at the University of Kentucky. The servers are equipped with Dell R820, Quad

Intel E5-4640 8-core (Sandy Bridge) @ 2.4 GHz and 512 GB/node of 1600 Mhz RAM.

Sixteen threads were used during the index construction process. The query program was

executed using single thread for both SBT and the three SeqOthello implementation vari-

ants. The disk usages, peak memory requirements, and construction/query run time for

each tool are presented in Table 4.1. To compare different tools in a fair manner, all the re-

sults shown in the table were obtained from the run with the same settings for k-mer length

(k=20) and θ (θ=0.8). All other parameters follow the default settings.

The original dataset requires about 1.3T disk space to store the raw fastq files. SeqOthello-

Exact requires only 7 GB to store the entire index, achieving a compression ratio of 182:1,
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Figure 4.6: Accuracy in terms of ROC-curves for transcript sequence query results reported
by SeqOthello-Exact as a function of mincov, min number of reads supporting a k-mer.

which is 7 times better than SBT. The SeqOthello-Compressed offers an even greater ad-

vantage with a compression ratio of 913:1. All methods requires significant amount of time

to construct, SeqOthello in general requires under 4 hours, about half of the time needed

by SBT. With current implementation of Othello, the peak memory of the construction is

about 16 GB, the highest among all steps and much higher than SBT.

In terms of query performance, SeqOthello-Exact delivers 6 times speedup over SBT

in single sequence query, 40 times in small batch query (1000 sequences) and over 100

speedup in large batch query of more than 36,076 sequences. All of these are achieved

using less than 2 GB memory. The top layer of SeqOthello-Exact uses about 1 GB mem-

ory and each of the second layer bucket uses less than 512 MB memory; for SeqOthello-
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Figure 4.7: Accuracy in terms of ROC-curves for transcript sequence query results reported
by SeqOthello-Exact as a funciton of k-mer length.

Compressed, the top layer Othello uses about 256 MB memory, and each of the second

layer data structure uses less than 48 MB memory; for SeqOthello-UniversalCompressed,

the top layer is an large array, which uses about 6.5 GB memory but the largest bucket in the

second layer uses less than 48 MB memory. SeqOthello can be easily executed on today’s

standard PCs with 8GB RAM. SeqOthello-Compressed offers even greater advantages in

its performance, since its total number of k-mers is much smaller than other variants. In

comparison, the peak memory of SBT varies with the size of batch query. It requires only

0.2 GB memory for small query but it needs more than 9 GB memory for querying 36,076

transcripts.

Results on SeqOthello-UniversalCompressed provided us some insight on the upper
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Table 4.1: Disk space, peak memory, and CPU time required by each tool for index con-
struction and sequence query.

SeqOthello
SBT Exact Compressed UniversalCompressed

Disk usage (GB) 51 7 1.4 7.7
Compression ratio 25:1 182:1 913:1 165:1

Construction Run time(min) 432 219 250 230
Peak Memory(GB) 0.4 10.2 2.7 10.6

1 query Run time(min) 1.2 0.2 0.1 0.2
Peak Memory(GB) 0.2 1.8 0.4 7.7

1,000 queries Run time(min) 8.2 0.2 0.1 0.3
Peak Memory(GB) 0.4 1.8 0.4 7.7

36,076 queries Run time(min) 199.6 1.7 2.1 2.4
Peak Memory(GB) 8.9 1.8 0.4 7.7

bound of disk size, memory and query performance when the set of unique k-mers are

much bigger than what we have in current data.

4.4 Gene fusion transcript query against TCGA Pan-Cancer RNA-seq datasets

The Cancer Genome Atlas (TCGA) (cancergenome.nih.gov) contains RNA-seq data of

10,113 tumor samples obtained from 9,215 cancer patients. The database allows researchers

to detect and characterize novel transcriptomic alterations across 29 different cancer types

in the GDC Legacy Archive (cancergenome.nih.gov). We have constructed a SeqOthello

index, storing the occurrences of 1.47 billion 21-mers across all tumor samples. The prepa-

ration of k-mers averages 4 minutes per sample while the construction of SeqOthello on all

samples took less than 9 hours. The index occupies only 76.6 GB of space, thus is portable

for querying at different locations.

We use the SeqOthello index to conduct a survey of all gene-fusion events curated by

TCGA Fusion Gene Database as of December 2017 [Yoshihara et al., 2015]. The database

documented of 11,658 unique tier-1 fusion events from TCGA detected by PRADA [Torres-
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Figure 4.8: An illustration of fusion junction sequence constructed for fusion query using
SeqOthello. Each fusion junction sequence consists of 20 bases from donor exon in one
gene and 20 bases from acceptor exon in the other gene. Each 21-mer within this 40-base
sequence spans the fusion junction. The query of a fusion sequence using SeqOthello may
return a maximum of 20 k-mer hits for each RNA-seq Experiments indexed by SeqOthello.

Garcı́a et al., 2014]. This represents 10,994 gene fusion pairs as multiple junctions might

exist for one fusion pair. For each fusion junction, we construct a fusion sequence that will

be used to query SeqOthello for its presence. The sequence consists of 20 bases from the

donor exon and 20 bases from the acceptor exon, thereby guaranteeing that any 21-mer

from the sequence will span the fusion junction (Figure 4.8).

A SeqOthello query of a fusion sequence returns the number of k-mer hits in each

sample. A simple method to determine the fusion occurrence in each sample can be done

in SBT-like approach, where a minimum fraction of k-mer hits, θ , is required to call the

presence. However, this technique yields lackluster sensitivity and specificity. Lowering θ

permits fusion detection with fewer spanning reads, but may increase false-positive calls if

the fusion junction sequence contains repetitive k-mers that are abundant in many samples.

Instead of using a fixed threshold for all fusion calls, we develop a noise-aware approach.

This approach first evaluates the background noise of the query result due to repetitive k-
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mers that are abundant in large fraction of samples, which can be detected leveraging the

distribution of k-mer hits across TCGA tumor samples queried through SeqOthello. Two

examples with different levels of repetitive k-mers are shown in Figure 4.9(a)(b). Assume

true fusion occurs in less than 2% of TCGA samples as the highest occurrence rate reported

so far is 0.953% out of all TCGA tumor samples by TMPRSS2-ERG27 (14.657% occur-

rence rate in prostate tumor samples). For each fusion, we estimate the level of background

noise, σ , as the number of k-mer hits at the 98th percentile of the samples in the distribution

of k-mer hits. We require additional number of k-mers, µ , beyond the background noise

as evidence of expression to conclude the fusion occurrence in a sample. We compared

the noise-aware approach with the θ -based SBT-like approach in recovering known fusion

occurrences and in detecting unknown fusion occurrences. As shown in Figure 4.9(c), the

noise-aware approach recovers more known fusions than the SBT-like approach without

generating too many putative fusions that are likely to be false. Fusion occurrences called

at µ = 7 is used for further analysis as it renders the best sensitivity while being most

conservative in generating candidates of novel occurrences. We then compared the distri-

butions of actual k-mer hits of known fusion occurrences and novel occurrences in all the

called fusion occurrences. The consistency between known and novel occurrences across

the entire spectrum of k-mer hits further supports the validity of the noise-aware approach

(Figure 4.9).

Under this method, we detect 92.7% of tier-1 fusion occurrences in TCGA Fusion Gene

Database with at least 10 spanning reads reported by PRADA. Additionally, we identify

270 novel occurrences of fusion events across 17 tumor subtypes that are not identified

by PRADA. We selected two fusion pairs with occurrences most inconsistent with current
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Figure 4.9: An illustration of fusion calling criteria using SeqOthello’s fusion junction se-
quence query results against TCGA pan-cancer RNA-seq data. (a) and (b) are examples
of k-mer hit distribution as a result of fusion junction sequence query using SeqOthello.
The presence of a small set of k-mers in large fraction of samples indicates background
noise as a result of these k-mers being repetitive. For each fusion, we use σ98th, the k-
mer hit at 98th percentile as an estimation of background noise. (a) Histogram of k-mer
hits by querying junction sequence spanning chr21:42880008-chr21:39956869 connecting
gene pair TMPRSS2-ERG. The background noise is estimated at σ98th=2. (b) Histogram
of k-mer hits querying junction sequence spanning chr5:134688636-chr5:179991489 con-
necting gene pair H2AFY-CNOT6. The background noise is estimated at σ98th=6. (c) The
comparison of performance in recovering database-known fusion occurrences and detect-
ing novel occurrences between noise-aware approach and SBT-like approach using θ -based
containment query. Here µ is minimum number of k-mer hits required beyond the fusion-
specific noise level used in noise-aware approach; θ is the minimum fraction of k-mer hits
required to call the presence of a query as used in SBT containment query. (d) The dis-
tribution of the actual k-mer hits of all called fusion occurrences called with noise-aware
approach.
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Figure 4.10: Top ten recurrent gene fusion detection results across 29 tumor types. Bar
plots show occurrence number of top ten recurrent gene fusions detected by SeqOthello
over different tumor types. Occurrences of each fusion on each tumor type are classified
into novel occurrences (not in TCGA fusion database) and annotated occurrences (already
curated by TCGA Gene Fusion Database).

curation for further validations: FGFR3-TACC3 in GBM samples (5 novel, 3 undetected)

and ESR1-C6orf97 in BRCA samples (2 novel, 5 undetected). We were able to confirm

all 7 novel fusion occurrences by the identification of at least 10 fusion spanning reads

supporting each. For all undetected fusions, insufficient spanning reads were confirmed,

which are consistent with low read support recorded in the database.

Figure 4.10 depicts the 10 novel, recurring fusions with greatest numbers of occur-

rences suggested by SeqOthello. Quite a few have doubled or even tripled the original

recurring rates. Interestingly, all novel occurrences agree with the original fusion cancer-

type classifications, rendering the chance of random occurrence negligible. This result

corroborates their cancer specificity and supports the high precision of SeqOthellos query

results. One example of this consistency is TMPRSS2-ERG, a clinical marker for prostate

cancer. SeqOthello extracted 122 pre-identified occurrences of TMPRSS2-ERG and 142

novel occurrences, all from prostate cancer samples.
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4.5 Conclusion

The tremendous growth of sequencing data has revolutionized and will continue to advance

genomic research in an unprecedented speed. The problem on how to efficiently query

against large-scale sequencing datasets as a whole emerges as a major challenge and its

research is still in its infancy. Fortunately, major breakthrough, such as SBT, started to

happen in the past two years.

We proposed and evaluated a novel indexing structure, SeqOthello, to support sequence

query against large-scale transcriptome sequencing data.

Our experiment on 148 equine RNA-seq datasets demonstrated that SeqOthello achieved

a compression ratio 182:1 of the raw sequencing data and were orders of magnitude faster

than SBT, answering 36,076 queries under 2 minutes. It is notable that by using com-

pressed k-mers, our approach achieved over 900:1 compression of the original data with

quite comparable sensitivity and specificity.

Additionally, we constructed a SeqOthello index on the TCGA Pan-Cancer RNA-seq

datasets, the latter totaling 54 TB in compressed fastq format. The SeqOthello index uses

only 76.6 GB disk space, achieving a compression ratio of 700:1. Querying the index to

assess the prevalence of 11,658 documented fusion events requires only five minutes on a

standard desktop computer with 32 GB memory.

106



www.manaraa.com

Chapter 5 Efficient taxonomic classification of metagenomics read

5.1 Introduction

In Chapter 1, two categories of existing taxnomic classification methods are introduced.

Our taxonomic classifier, MetaOthello, falls into the second category, where Kraken and

Clark are representatives. Approaches in this category utilize indexing structures for k-mer

matching. For example, Kraken indexes its lexicographically sorted k-mer database using a

minimizer offset array, while Clark uses a hash table to store the mapping between a k-mer

and its classification information. Both Kraken and Clark require computers with large

memory to support the construction of their indexing structure (at least 170 GB RAM) and

k-mer querying during classification (at least 70 GB RAM). Although there are variations

of both algorithms with smaller memory footprints, they often afford significantly lower

accuracy and much slower execution speed compared to the full version. For this reason,

the ever-increasing amount of sequencing and reference genome data call for tools with

better scalability in both memory and computation.

In this dissertation, we present a new algorithm, dubbed MetaOthello, for taxonomic

classification of metagenomics sequencing reads. It employs a novel data structure, l-

Othello, to support ultra-fast k-mer classification, achieving at least an order-of-magnitude

improvement in speed over the state-of-the-art methods, Kraken and Clark, and three times

faster than another recently published protein alignment-based tool Kaiju. In the meantime,

MetaOthello also substantially reduces the memory footprint, typically requiring only one
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third of the aforementioned methods. This modest memory requirement allows our al-

gorithm to run on typical lab servers with 32 GB RAM, rendering it more accessible to

biological researchers than those with memory requirements achievable only by super-

computers.

5.2 MetaOthello algorithm

5.2.1 K-mer taxon signatures

A k-mer is a length k subsequence of genomic sequences; for any sequence of length L,

there exist a maximum of L− k + 1 possible k-mers. Metagenomic reference material

consists of one or more complete reference genomes belonging to an organism. Increas-

ingly sophisticated sequencing techniques have permitted discovery of distinct reference

genomes for a single species of organism, thereby capturing genomic variations that are

often important to the functionality of the microbial species. The number of genomes

(whether draft or complete) available as metagenomic reference material increases with

each new discovery. If we consider each dataset as a collection of k-mers, a given taxon

can be described by the set of k-mers present in the reference sequences belonging to its

taxonomic subtree. The problem of classifying a metagenomic read thus simplifies to the

identification of the taxon that best matches the set of k-mers associated with the target

read. When k is sufficiently large (e.g., k > 20), the majority of k-mers are unique to the

species carrying them. These species-specific k-mers may serve as signatures, directly im-

plicating the appropriate taxonomic classification. However, a significant proportion of

k-mers is present in multiple species, making them unique only to higher-ranking taxa. In
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this work, we formalize the taxonomic specificity of a k-mer as the signature of a taxon:

A k-mer is considered to be a signature of a taxon if (1) the k-mer does not appear in

any genomic references belonging to ancestors or siblings of the target taxon, but only to

sequences belonging to the taxon’s subtree, and (2) the k-mer is not a signature of any

lower-ranked taxon in the subtree. Equivalently, the taxon evincing a k-mer signature is the

lowest common ancestor (LCA) of all species in the taxonomy whose reference genomes

contain that k-mer.

In this way, as illustrated in Fig.5.1A, the set of all k-mers present in the genomic

references of a taxonomy can be divided into disjoint collections, each of which contains

the set of signature k-mers belonging to a single node in the taxonomy tree. Formally, let

S be the set of all k-mers present in genomic references annotated by the taxonomy and let

T = {1,2, · · · , |T |} be the taxa (nodes) present in the taxonomy. Then S can be divided into

|T | disjoint sets, S = {S0,S1, · · · ,St , · · · ,S(|T |−1)}, where for any node t ∈ T , St corresponds

to the set of k-mer signatures belonging to taxon t. Thus, there exists a mapping, g : S→ T ,

such that g(s) = t if the k-mer, s ∈ S, is a signature of the taxon, t ∈ T . In MetaOthello, this

mapping is supported by the hashing classifier Othello [Yu et al., 2017].

5.2.2 Taxonomic classification of sequencing reads

As illustrated in Fig.5.1B, given any sequencing read, our algorithm iterates over each k-

mer from the beginning of the read and, for each k-mer, retrieves the taxon to which it is

specific using Othello. Taxonomic classification of the read is determined by assembling

the taxa for all k-mers in the read. The classification is straightforward when all k-mers

indicate the same taxon, but this is not often the case. Disparate taxa are considered to be
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Figure 5.1: Illustration of MetaOthello algorithm. A: an example of taxonomy with refer-
ence sequences in the leaf nodes. 3-mers that are signatures to each node are highlighted
in red colors with different shades. B: a two-step approach in read classification.

consistent if they belong to the same path in the taxonomy, meaning that one assignment is

the higher rank of the other. When these taxa belong to different branches, they represent

conflicting information. The issue is further complicated by the possibility of false taxo-

nomic information returned from querying alien k-mers, where the k-mer in the read does

not appear in any of the reference sequences.

To tackle this challenge, we have designed a window-based classification approach. A

window is defined as a sequence of consecutive k-mers that are assigned to the same taxon

of a given level. The window-based approach guards against false-positive assignments

due to alien k-mers.

Additionally, each window corresponds to a maximum read subsequence that matches

the reference sequences. Thus, the longer the window, the longer the subsequence match,

and the less likely the match is random. In comparison, other algorithms such as Kraken

and Clark count the total number of k-mer matches, regardless of their spatial distribution

110



www.manaraa.com

across the read.

If multiple taxon windows are available, MetaOthello scores each of them using the

summed squares of window sizes as in the following formula; the taxon with the maximum

score will be selected:

Score(t) = ∑(wt
i)

2

where wt
i denotes the number of k-mers in the ith window classified to taxon t.

A k-mer signature belonging to a taxon is also specific to its higher-ranking taxa, so at

higher taxonomic ranks, there exist more k-mers to distinguish a taxon from its siblings.

Thus, longer k-mer windows and more accurate classifications are expected at higher taxo-

nomic ranks. Under this assumption, a “top-down” strategy is adopted during read classifi-

cation. Given a read sequence, MetaOthello starts the classification at the top rank and con-

tinues the classification down the ranks until there does not exist a sufficiently large k-mer

window supporting the level. Based on the k-mer distribution in each taxon, MetaOthello

establishes a threshold on minimum window-size when the classification on that taxon re-

quires. Theorem 1 shows that the minimum window size threshold can be precomputed

for each taxon prior to read classification. The minimum window size required for a taxon

is determined by the probability of an alien k-mer query on l-Othello returning a taxon

rooted in t and the acceptable false-positive rate. The larger the size of the taxon subtree,

the higher the probability that a random alien k-mer may match to t and thus the longer

the window required for reliable classification. Additionally, a larger window size will be

required in order to lower the false-positive rate.

Theorem 1 Given a user-defined false-positive rate λ and the total read number M, the
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minimum window-size threshold required for a taxon t can be computed as logp(t)
λ

(1−λ )M ,

where pt denotes the probability that an alien k-mer query on l-Othello returns a value in

the taxon subtree with root t.

The proof is presented in our published journal article [Liu et al., 2018]. For example,

when t is a genus-level node, supposing l = 12, then p(t) ∼ (1+ 7)2−l = 1
256 . Given 10

million reads and suppose λ = 0.001, then logp(t)
λ

(1−λ )M = 3.42, and only windows larger

than three will be taken into consideration when determining the read assignment.

5.3 Experimental results on simulated datasets

5.3.1 Classification accuracy and taxon-specific k-mer relative abundance

Accurate classification of a read to a taxon is largely dependent upon the presence of k-mer

signatures. Thus the abundance of these signature k-mers (i.e., the proportion of taxon-

specific k-mers among all k-mers present in the reference sequences for the taxon) becomes

an important indicator of the capability of our algorithm. Thus we first investigate the

correlation between classification accuracy and the relative abundance of taxon-specific

k-mers.

Classification accuracy is computed as the fraction of reads assigned correctly. Us-

ing a next-generation sequencing (NGS) read simulator called ART [Huang et al., 2012],

we simulated 10,000 reads for each of 2,629 reference genomes in the NCBI RefSeq

bacterial genome database, for a total of 26,290,000 reads. The database is available at

ftp://ftp.ncbi.nih.gov/genomes/archive/old_refseq/Bacteria/. Each read is

paired-end and of length 100 bp with a fragment size of 250 bp, generated using the de-
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Figure 5.2: Correlation between species-specific k-mer signatures and classification accuracy when
k=20 (A) and k=31 (B). In each panel, the central figure depicts the correlation between species-
specific k-mer proportion and read-classification accuracy for all species; the top histogram shows
the distribution of species as a function of species-specific k-mer proportion, and the right histogram
shows the distribution of classification accuracy for all species.

fault error profile for the HiSeq platform. Figure 5.2 shows the read-classification accuracy

for each species as a function of species-specific k-mer proportion, where read assign-

ments were generated by the MetaOthello algorithm using 20-mers and 31-mers, respec-

tively. The scatter plot for either k-mer size demonstrates that the vast majority of all

species manifest more than 50% 20-mers that are species-specific, and almost all species

have 75% species-specific 31-mers. Although in general more species-specific k-mers af-

ford better classification accuracy, these results suggest that the presence of 50% or more

species-specific k-mers affords suitably high classification accuracy, thereby demonstrating

the utility of k-mer signatures in classifying metagenomic reads.

5.3.2 Comparison with the state-of-the-art tools

We assess the performance of MetaOthello in comparison to three of state-of-the-art tools:

Kraken (version 0.10.5 beta), Clark (version 1.2.3), and Kaiju (version 1.4.4). Besides

the newly published tool Kaiju, Kraken and Clark were chosen based on the recommen-
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dation of a recent benchmarking paper [Lindgreen et al., 2016], which evaluated 14 tools

using six datasets and subsequently declared Kraken and Clark the best performers over

Genometa [Davenport et al., 2012], GOTTCHA [Freitas et al., 2015], LMAT [Ames et al.,

2013], MEGAN [Huson et al., 2007, 2011], MG-RAST [Glass and Meyer, 2011], the One

Codex webserver, taxator-tk [Dröge et al., 2015], MetaPhlAn [Segata et al., 2012], Meta-

Phyler [Liu et al., 2010], mOTU [Sunagawa et al., 2013], and QIIME [Caporaso et al.,

2010]. The comparison was benchmarked against three publicly available datasets: HiSeq,

MiSeq, and SimBA5. The same datasets have been used multiple times to evaluate a num-

ber of metagenomic classification tools, including Kraken in previous studies [Wood and

Salzberg, 2014]. All tools were executed using the same reference database (NCBI RefSeq

as of October 1st, 2016), and all other parameters follow the default settings.

Classification Accuracy

We first compare classification accuracy. Three different k-mer lengths (20-mer, 25-mer,

and 31-mer) are used to assess the performance relationship with k-mer size for Kraken,

Clark, and MetaOthello; Kaiju is not a k-mer-based algorithm. To facilitate the compari-

son and to mimic the sequencing data generated by current platforms, we discarded reads

shorter than 36 bp and those whose taxon is not included in the reference taxonomy.

Reads were classified by each algorithm at three taxonomic levels: phylum, genus, and

species. MetaOthello, Kraken, and Kaiju were able to classify reads at the three levels

simultaneously, while Clark required three separate runs to conduct similar classifications.

Thus for Clark, results from these runs were merged for the purpose of direct comparison.

Precision and sensitivity were computed at each of the three classification levels. Precision
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is defined as the ratio between correctly assigned reads and the total number of reads in

an assignment; sensitivity is calculated as the fraction of total reads assigned correctly. F1

score (i.e., the harmonic mean of precision and sensitivity) was also calculated to quantify

the balance between these two metrics. Results of the comparison are shown in Table 5.1.

In general, longer k-mers enhance the precision of read classification but decrease sen-

sitivity, as observed in MetaOthello, Kraken, and Clark. Within each dataset, the overall

winner (in bold) was the one with highest F1-score when considering across all three k-mer

sizes. In phylum-level classification, MetaOthello outperforms the other algorithms in all

three datasets all using 20-mers. At both genus and species levels, MetaOthello exhibits the

best performance on two out of the three datasets using either 25-mers or 20-mers. Kraken

performs the best in the remaining comparisons, followed closely by MetaOthello in both

cases. In general, Kaiju delivered much lower (20% to 30%) sensitivity compared to the

other three tools, due to its lack of capability in classifying reads from non-protein coding

regions.

Runtime and Memory

Speed benchmarks were performed using the servers from Lipscomb High-Performance

Computing at the University of Kentucky. The servers are equipped with Dell R820, Quad

Intel E5-4640 8-core (Sandy Bridge) @ 2.4 GHz and 512 GB/node of 1600 Mhz RAM.

Each algorithm was executed using eight threads and k-mer lengths as specified previ-

ously; all other parameters follow the default settings. The speed for each tool is presented

in Figure 5.3. In general, MetaOthello achieved the highest processing speed, clocking

roughly 1 billion bases per minute. This figure represents an order-of-magnitude improve-
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Table 5.1: Accuracy of read taxonomic classification in terms of precision, sensitivity, and
F1 score.

Phylum Genus Species
Prec / Sens / F1 Prec / Sens / F1 Prec / Sens / F1

20mer 98.4 / 95.0 / .967 97.2 / 92.5 / .948 82.0 / 69.4 / .751
MetaOthello 25mer 99.4 / 92.2 / .957 99.1 / 91.2 / .950 84.2 / 69.1 / .760

31mer 99.4 / 89.0 / .939 99.3 / 88.2 / .934 85.7 / 68.0 / .758
20mer 97.8 / 94.8 / .963 96.1 / 92.0 / .940 80.2 / 69.2 / .743

HiSeq Kraken 25mer 99.7 / 92.3 / .959 99.1 / 91.4 / .951 83.7 / 69.4 / .759
31mer 99.7 / 88.3 / .937 99.3 / 87.6 / .931 85.4 / 67.6 / .745
20mer 97.7 / 95.5 / .966 95.1 / 92.6 / .939 76.4 / 69.5 / .728

Clark 25mer 99.7 / 92.1 / .958 99.1 / 91.2 / .950 83.5 / 69.2 / .757
31mer 99.7 / 88.8 / .940 99.3 / 88.1 / .934 85.4 / 68.0 / .757

Kaiju 99.4 / 68.7 / .812 98.6 / 65.1 / .785 89.2 / 34.7 / .499
20mer 99.2 / 97.5 / .983 96.2 / 92.2 / .942 91.8 / 78.6 / .846

MetaOthello 25mer 99.6 / 95.4 / .975 97.4 / 91.4 / .943 93.0 / 78.3 / .850
31mer 99.6 / 92.9 / .961 98.0 / 89.7 / .937 93.8 / 77.2 / .847
20mer 99.0 / 97.5 / .983 95.8 / 92.2 / .939 91.0 / 78.9 / .845

MiSeq Kraken 25mer 99.8 / 95.1 / .974 97.4 / 91.2 / .942 92.7 / 78.3 / .849
31mer 99.9 / 92.3 / .960 98.0 / 89.3 / .935 93.6 / 76.8 / .844
20mer 98.8 / 97.8 / .983 94.4 / 92.5 / .934 86.9 / 78.8 / .826

Clark 25mer 99.8 / 95.2 / .975 97.1 / 91.5 / .942 91.9 / 78.5 / .847
31mer 99.9 / 92.7 / .962 98.0 / 89.8 / .937 93.4 / 77.3 / .846

Kaiju 99.5 / 75.7 / .860 98.5 / 68.0 / .805 95.2 / 40.6 / .570
20mer 99.9 / 99.7 / .998 99.6 / 95.8 / .977 99.3 / 84.2 / .911

MetaOthello 25mer 99.9 / 98.2 / .990 99.8 / 94.6 / .971 99.5 / 83.1 / .906
31mer 99.5 / 92.2 / .957 99.5 / 88.7 / .938 99.4 / 77.9 / .873
20mer 99.8 / 99.5 / .996 99.4 / 95.9 / .976 98.8 / 84.6 / .912

simBA5 Kraken 25mer 99.9 / 98.5 / .992 99.8 / 95.0 / .974 99.5 / 83.8 / .909
31mer 99.9 / 94.2 / .970 99.9 / 90.9 / .952 99.7 / 80.0 / .887
20mer 99.8 / 99.6 / .997 98.5 / 95.8 / .971 94.4 / 84.2 / .890

Clark 25mer 99.9 / 98.4 / .992 99.8 / 94.8 / .973 99.4 / 83.4 / .907
31mer 99.9 / 93.5 / .966 99.9 / 90.2 / .948 99.7 / 79.2 / .883

Kaiju 99.6 / 75.6 / .860 97.9 / 65.9 / .788 96.5 / 46.7 / .630

Table 5.2: The proportion of reads classified into the top-five genera by each algorithm using
different k-mer lengths.

MetaOthello Kraken Clark Kaiju
k-mer length 20 25 31 20 25 31 20 25 31
Streptococcus 14.3 13.2 12.1 14.6 13.3 12.2 14.3 13.2 12.0 10.1
Haemophilus 7.00 6.67 5.94 7.09 7.13 6.01 6.95 6.41 5.89 4.77

Prevotella 5.62 4.89 4.27 5.77 5.01 4.27 5.59 4.57 4.19 7.65
Veillonella 3.32 2.67 1.92 3.44 2.93 1.98 3.23 2.59 1.89 5.17
Neisseria 2.22 1.86 1.53 2.28 1.94 1.55 2.21 1.78 1.51 3.11

ment over Kraken and Clark, the two most-rapid state-of-the-art tools within the category

of alignment-free classifiers. Impressively, the high speed does not entail a compromise in
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Figure 5.3: Billion bases processed per minute by each tool with three k-mer length settings
using 8 threads.

the memory requirement. MetaOthello only consumes about one-third (peak memory 27

GB) the RAM required by Kraken and Clark (peak memory 73 GB).

The construction of the MetaOthello index from the NCBI RefSeq bacterial genome

sequence database requires roughly 6 hours with peak memory usage up to 40 GB using

16 threads. In contrast, Kraken and Clark used 164 GB and 120 GB respectively for index

construction but both finished under 4 hours with 16 threads.

In summary, MetaOthello achieves a significant speedup with much smaller memory

footprint in comparison with Kraken and Clark while delivering competitive or even su-

perior performance in classification accuracy. While Kaiju is relatively scalable, it suffers

from low sensitivity in classification.
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5.4 Metagenomic classification of real datasets

5.4.1 Human Microbiome Project data

To assess the performance of MetaOthello relative to Kraken, Clark, and Kaiju on real

datasets, the three algorithms were run on sequencing data from three saliva samples

(NCBI SRA accessions: SRS015055, SRS019120, and SRS014468) used in the Human

Microbiome Project [Human Microbiome Project, 2012]. We ran the three k-mer-based

algorithms at each of three different k-mer length settings (20-mer, 25-mer, and 31-mer) as

with the simulated data. The three samples were analyzed separately, and the results were

pooled together to assess the relative abundances of species. The top five most-abundant

genera are presented in Table 5.2. The four tools reported the same five most-abundant

genera: Streptococcus, Haemophilus, Prevotella, Veillonella, and Neisserlia, all of which

are known to be associated with human saliva. Interestingly, although the absolute abun-

dance (i.e., the fraction of total reads assigned to a given genus) varies with k-mer size,

the relative abundances remain stable except for Kaiju. The false-positive rate, however,

cannot be assessed in this case.

5.4.2 Zika virus detection

The 2015-2016 Zika fever outbreak caused by Zika virus are spread over Americas, the

Pacific, and Asia. Increasing metagenomic NGS data has been generated to detect the Zika

virus and track their evolution [Cunha et al., 2016] or study the correlation between clinical

presentation and infection [Sardi et al., 2016]. However, this analysis is greatly limited

by the lack of reference sequence diversity in current genome database. For example, in
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NCBI/RefSeq genome database as of Oct 30th, 2016, there is only one reference genome

sequence, but 47 strain genome sequences have been identified [Sardi et al., 2016]. Hence,

besides using the regular reference genome k-mer database, we also explored an alternative

approach where we included k-mers directly from Zika virus sequencing data as part of the

reference.

To assess MetaOthello’s performance and how additional k-mers from sequencing data

help on Zika read detection, we applied MetaOthello on three Zika virus genome sequenc-

ing datasets from NCBI SRA with accessions SRR3332512, SRR3332513, and SRR3332514.

Those three datasets are sequenced from animal samples at day 4 post infection with Zika

virus. Firstly, we ran MetaOthello with reference genome 20-mer only database, and

successfully identified 74-82% reads in each dataset as Zika reads. Next, we added 20-

mers from the sequencing reads of raw Zika virus sample (SRR3332511) into database

and repeated the analysis. In order to avoid the effects of noises and contamination, we

only incorporated 20-mers with a minimum frequency of 10,000 in this experiment. As

shown in Table 5.3, we do observe an increase up to 12% in terms of sensitivity. In or-

der to determine the correctness of those additionally classified Zika reads, we randomly

selected 100 of them and aligned to ENA sequences using blastn through EBI webserver

(https://www.ebi.ac.uk/Tools/sss/ncbiblast/nucleotide.html). All of them were successfully

aligned to at least one Zika strain with a minimum identity of 95%. We believe this ap-

proach provides a viable solution to fill the gap between limited reference genome se-

quences in a regular database and the highly diverse genomic datasets in real-world appli-

cations.
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Table 5.3: Data sizes and numbers of reads classified as Zika reads by MetaOthello with
two alternative databases.

Data Total read # Detected Zika read # by MetaOthello
RefSeq genome RefSeq genome + sequencing
k-mer database data k-mer database

SRR3332512 591,839 442,850 (74.83%) 510,579 (86.27%)
SRR3332513 483,758 392,360 (81.11%) 430,574 (89.01%)
SRR3332514 629,483 495,612 (78.73%) 567,522 (90.16%)

5.5 Conclusion

In this chapter, we present MetaOthello, a novel metagenomic sequencing read classifier.

MetaOthello leverages a novel probabilistic hashing structure, l-Othello, to conduct tax-

onomic classification using taxon-specific k-mer signatures. The algorithm delivers ultra-

fast and memory-efficient solutions to k-mer-based taxonomic classification. Within the set

of alignment-free approaches, MetaOthello achieves an order-of-magnitude improvement

in classification speed relative to the fastest algorithms, Kraken and Clark, while reduc-

ing the RAM requirement from 70G to 27G. MetaOthello exhibits high sensitivity and

precision competitive with Kraken and Clark, and in most cases achieves a better balance

between the sensitivity and specificity (as quantified by F1 score). It is also three times

faster than the protein alignment-based method Kaiju and delivers much higher classifica-

tion accuracy.
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Chapter 6 Conclusion

Recent years, we have witnessed how the Next Generation Sequencing (NGS) technology

advances biomedical research. Each run of NGS will generate tens to hundreds of millions

of sequencing reads. Accurate and scalable approaches for the analysis of those large-

scale datasets remain as unmet needs. This dissertation presents four novel computational

methods for NGS data analysis, three of them focus on RNA-seq data analysis, and the

other one is designed for metagenomics sequencing data analysis.

RNA-seq plays a central role in profiling the transcriptome and is used to a vast range

of applications such as differential expression analysis on both gene and transcript lev-

els, novel isoform prediction, genomic variants calling, RNA editing detection and so on.

In most of those applications, especially those reference-based ones, a critical and fun-

damental step is to correctly discover the alignment of each RNA-seq read on the refer-

ence genome. In Chapter 2, we introduce MapSplice3, a comprehensive reference-based

spliced aligner. MapSplice3 adopts a two-phase alignment strategy. It identifies candi-

date mapping positions for each read sequence in the first phase and learns transcriptome

context from the intermediate alignments. Context refers to transcriptome features includ-

ing genome-wide splicing structure and SNPs. In the second phase, MapSplice3 performs

context-aware alignment, which maps previously unmapped or partially mapped reads to

the learned context and reference genome simultaneously. Our experiments show that the

context-aware alignment improves both the performance of splice junction discovery and

mapping completeness of read sequences. Additionally, MapSplice3 shows great sensitiv-
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ity and accuracy in gene fusion and circular RNA detection.

Although MapSplice3 has already performed quite well in read alignment, utilizing a

standard reference genome as the only template can lead to mapping bias which overesti-

mates reference allelic ratio, as well as the failure to detect personal splice junctions created

by splice site mutations. In Chapter 3, we describe iMapSplice, an individualized RNA-

seq read aligner. By taking into account both the reference genome sequence and personal

genomic variants, iMapSplice performs an unbiased mapping of reads carrying either the

reference or alternative base. Besides general improvements in read alignment and splice

junction discovery, iMapSplice significantly alleviates the allelic ratio bias, which is a com-

mon deficiency for sequencing read aligners. Additionally, considering genomic variants

breaks the dependency on splice site dinucleotide motifs in the reference genome, and en-

ables iMapSplice to detect more than 1,000 personal canonical splice junctions created

through splice site mutations in 74 human datasets. Performance-wise, iMapSplice is a

lightweight approach with minimum overhead in both storage and running time compared

to other alignment methods that are also capable of considering individual variants during

the mapping process.

Conventional approaches including MapSplice3 and iMapSplice provide great capac-

ities for transcriptome profiling but still are not efficient for global surveys of given tran-

scriptome features (such as gene fusions) against large-scale datasets. For example, to

discover gene fusions in TCGA Pan-cancer RNA-seq data (10,113 datasets in total), even

using the most-efficient existing fusion detection algorithm, it is estimated to require 785

days of computation. To tackle this challenge, we developed SeqOthello, an efficient se-

quencing data indexing structure. It supports super-fast sequence query against large-scale
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transcriptome sequencing data. The data structure contains two-layer hierarchy, with the

first layer mapping genomic sequence k-mers to their frequency buckets and the second

layer mapping k-mer to their occurrence maps across all samples. The mapping at each

node can be reduced into a many-to-one mapping problem between (hundreds of) millions

of k-mers and up to millions of disjoint categories. These mappings are efficiently imple-

mented using the data structure Othello. For the same application described above (gene

fusion survey in TCGA data), it is able to return the presence information of 11,658 previ-

ously documented gene fusion events for each dataset in five minutes. At the same time, it

achieves great compression ratio (700:1).

Besides the computational methods for RNA-seq data analysis, we describe a novel tax-

onomic classifier for metagenomics sequencing data in Chapter 5. The software, MetaOthello,

builds upon taxon-specific k-mer signatures to support direct read assignment to any level

in the taxonomy. It employees the same probabilistic hashing classifier Othello, to support

efficient query of a taxon using its k-mer signatures. MetaOthello achieves an order-of-

magnitude faster speed compared to the current most efficient programs and consumes

only one-third of the RAM at the same time. Also, MetaOthello is capable of conduct-

ing a hierarchical top-down taxonomic classification and delivers performance competitive

to, if not better than, other algorithms in both sensitivity and specificity as validated by

benchmarking on a variety of datasets.

All software packages of the methods described in this dissertation are open-source,

released, and freely available to the research community.

As the technology keeps evolving and the prices keep dropping, NGS will be more and

more widely adopted and applied in biological and medical studies and applications. It is
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believed that the aggregation of NGS data will eventually provide a much more compre-

hensive picture of molecular biology. To analyze such large-scale data, besides enormous

computational resources, accurate and scalable computational methods are in high demand.

We expect that the methods presented in this dissertation are great fits for the analysis of

NGS data, and will help scientists gain insights from their experiments.

Copyright c© Xinan Liu, 2018.
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